Abstract
This paper presents an original system for the automatic detection of droppers in catenary staves. Based on a top-down approach, our system exploits a priori knowledge that are used to perform a reliable extraction of droppers. Experiments conducted on a significant database of real catenary stave images show some promising results on this very challenging machine vision application.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Battle, J., Casals, A., Freixenet, J., Martí, J.: A review on strategies for recognizing natural in colour images of outdoor scenes. Image and Vision Computing 18, 515–530 (2000)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Kouadio, R., Delcourt, V., Heutte, L., Petitjean, C.: Video based catenary for preventive maintenance on Iris 320. In: Proc. WCRR 2008, Seoul, Korea (2008)
Montreuil, F., Kouadio, R., Petitjean, C., Heutte, L., Delcourt, V.: Automatic extraction of information for catenary scene analysis. In: Proc. EUSIPCO 2008, Lausanne, Switzerland (2008)
Lacoste, C., Descombes, X., Zerubia, J., Baghdadi, N.: Unsupervised line network extraction from remotely sensed images by polyline process. In: Proc. EUSIPCO 2004, Vienna, Austria (2004)
Richter, U., Schneider, R.: Automatische optische Inspektion von Oberleitungen. Elektrische Bahnen 99, 94–100 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petitjean, C., Heutte, L., Kouadio, R., Delcourt, V. (2009). A Top-Down Approach for Automatic Dropper Extraction in Catenary Scenes. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-02172-5_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02171-8
Online ISBN: 978-3-642-02172-5
eBook Packages: Computer ScienceComputer Science (R0)