Abstract
In this paper, we apply the ideas from [2] to investigate the effect of some semantic based guidance to the crossover operator of GP. We conduct a series of experiments on a family of real-valued symbolic regression problems, examining four different semantic aware crossover operators. One operator considers the semantics of the exchanged subtrees, while the other compares the semantics of the child trees to their parents. Two control operators are adopted which reverse the logic of the semantic equivalence test. The results show that on the family of test problems examined, the (approximate) semantic aware crossover operators can provide performance advantages over the standard subtree crossover adopted in Genetic Programming.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banzhaf, W., Nordin, P., Francone, F.D., Keller, R.E.: Genetic Programming: An Introduction - On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, San Francisco (1998)
Beadle, L., Johnson, C.G.: Semantically Driven Crossover in Genetic Programming. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 111–116. IEEE Press, Los Alamitos (2008)
Johnson, C.G.: Deriving Genetic Programming Fitness Properties by Static Analysis. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 299–308. Springer, Heidelberg (2002)
Johnson, C.G.: Genetic Programming with Guaranteed Constraints. In: Lofti, A., John, B., Garibaldi, J. (eds.) Recent Advances in Soft Computing. Physica/Springer-Verlag, Heidelberg (2002)
Johnson, C.G.: Genetic Programming with Fitness based on Model Checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)
Johnson, C.G.: What Can Automatic Programming Learn from Theoretical Computer Science? In: Yao, X. (ed.) Proceedings of the UK Workshop on Computational Intelligence, University of Birmingham (2002)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Mahfoud, S.W.: Crowding Preselection Revisited. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2, pp. 27–36. Elsevier, Amsterdam (1992)
Mahfoud, S.W.: Niching Methods for Genetic Algorithms. Doctoral Dissertation at University of Illinois at Urbana-Champaign (1995)
McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)
Mori, N., McKay, R.I., Nguyen, X.H., Essam, D.: Equivalent Decision Simplification: A New Method for Simplifying Algebraic Expressions in Genetic Programming. In: Proceedings of 11th Asia-Pacific Workshop on Intelligent and Evolutionary Systems (2007)
Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008), http://lulu.com http://www.gp-field-guide.org.uk
Nguyen, X.H., McKay, R.I., Essam, D.: Solving the Symbolic Regression Problem with Tree-Adjunct Grammar Guided Genetic Programming: The Comparative Results. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1326–1331. IEEE Press, Los Alamitos (2002)
Krysztof, K., PremysBaw, P.: Potential Fitness for Genetic Programming. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2008), Late-Breaking Papers, pp. 2175–2180. ACM, New York (2008)
Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Koza, J. (ed.) Late Breaking Papers at the GP 1997 Conference, Stanford, CA, USA, July 13-16, pp. 132–140. Stanford Bookstore (1997)
Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, ch. 8, pp. 163–190. MIT Press, Cambridge (1999)
Dignum, S., Poli, R.: Crossover, Sampling, Bloat and the Harmful Effects of Size Limits. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 158–169. Springer, Heidelberg (2008)
Dignum, S., Poli, R.: Operator Equalisation and Bloat Free GP. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008)
Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. In: Genetic Programming and Evolvable Machines, vol. 3, pp. 81–91. Springer, Netherlands (2002)
Ghodrat, M.A., Givargis, T., Nicolau, A.: Equivalence Checking of Arithmetic Expressions. In: CASES 2005, San Francisco, California. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, Q.U., Nguyen, X.H., O’Neill, M. (2009). Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds) Genetic Programming. EuroGP 2009. Lecture Notes in Computer Science, vol 5481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01181-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-01181-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01180-1
Online ISBN: 978-3-642-01181-8
eBook Packages: Computer ScienceComputer Science (R0)