[go: up one dir, main page]

Skip to main content

A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

Abstract

We use 2166 processors of the MareNostrum (IBM PowerPC 970) supercomputer to model seismic wave propagation in the inner core of the Earth following an earthquake. Simulations are performed based upon the spectral-element method, a high-degree finite-element technique with an exactly diagonal mass matrix. We use a mesh with 21 billion grid points (and therefore approximately 21 billion degrees of freedom because a scalar unknown is used in most of the mesh). A total of 2.5 terabytes of memory is needed. Our implementation is purely based upon MPI. We optimize it using the ParaVer analysis tool in order to significantly improve load balancing and therefore overall performance. Cache misses are reduced based upon renumbering of the mesh points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

    MATH  Google Scholar 

  2. Seriani, G.: 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg. 164, 235–247 (1998)

    Article  MATH  Google Scholar 

  3. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Article  Google Scholar 

  4. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int. 149(2), 390–412 (2002)

    Article  Google Scholar 

  5. Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral-element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Komatitsch, D., Tsuboi, S., Ji, C., Tromp, J.: A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: Proceedings of the ACM/IEEE Supercomputing SC 2003 conference, CD-ROM (2003), www.sc-conference.org/sc2003

  7. Hughes, T.J.R.: The finite element method, linear static and dynamic finite element analysis. Prentice-Hall International, Englewood Cliffs (1987)

    MATH  Google Scholar 

  8. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72(6), T81–T95 (2007)

    Article  Google Scholar 

  9. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Monthly Weather Review 100, 136–144 (1972)

    Article  Google Scholar 

  10. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 24th National ACM Conference, pp. 157–172. ACM Press, New York (1969)

    Google Scholar 

  11. Jost, G., Jin, H., Labarta, J., Giménez, J., Caubet, J.: Performance analysis of multilevel parallel applications on shared memory architectures. In: Proceedings of the IPDPS 2003 International Parallel and Distributed Processing Symposium, Nice, France (April 2003)

    Google Scholar 

  12. Danielson, K.T., Namburu, R.R.: Nonlinear dynamic finite element analysis on parallel computers using Fortran90 and MPI. Advances in Engineering Software 29(3-6), 179–186 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Komatitsch, D., Labarta, J., Michéa, D. (2008). A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics