Abstract
We use 2166 processors of the MareNostrum (IBM PowerPC 970) supercomputer to model seismic wave propagation in the inner core of the Earth following an earthquake. Simulations are performed based upon the spectral-element method, a high-degree finite-element technique with an exactly diagonal mass matrix. We use a mesh with 21 billion grid points (and therefore approximately 21 billion degrees of freedom because a scalar unknown is used in most of the mesh). A total of 2.5 terabytes of memory is needed. Our implementation is purely based upon MPI. We optimize it using the ParaVer analysis tool in order to significantly improve load balancing and therefore overall performance. Cache misses are reduced based upon renumbering of the mesh points.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)
Seriani, G.: 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg. 164, 235–247 (1998)
Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)
Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int. 149(2), 390–412 (2002)
Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral-element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)
Komatitsch, D., Tsuboi, S., Ji, C., Tromp, J.: A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: Proceedings of the ACM/IEEE Supercomputing SC 2003 conference, CD-ROM (2003), www.sc-conference.org/sc2003
Hughes, T.J.R.: The finite element method, linear static and dynamic finite element analysis. Prentice-Hall International, Englewood Cliffs (1987)
De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72(6), T81–T95 (2007)
Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Monthly Weather Review 100, 136–144 (1972)
Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 24th National ACM Conference, pp. 157–172. ACM Press, New York (1969)
Jost, G., Jin, H., Labarta, J., Giménez, J., Caubet, J.: Performance analysis of multilevel parallel applications on shared memory architectures. In: Proceedings of the IPDPS 2003 International Parallel and Distributed Processing Symposium, Nice, France (April 2003)
Danielson, K.T., Namburu, R.R.: Nonlinear dynamic finite element analysis on parallel computers using Fortran90 and MPI. Advances in Engineering Software 29(3-6), 179–186 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Komatitsch, D., Labarta, J., Michéa, D. (2008). A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-92859-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92858-4
Online ISBN: 978-3-540-92859-1
eBook Packages: Computer ScienceComputer Science (R0)