Abstract
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: Given a graph G(V,E) a set P ⊆ V is a power dominating set if every vertex is observed after we have applied the next two rules exhaustively. First, a vertex is observed if v ∈ P or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed as well. We show that Power Dominating Set remains \(\mathcal{NP}\)-hard on cubic graphs. We designed an algorithm solving this problem in time \(\mathcal{O}^*(1.7548^n)\) on general graphs. To achieve this we have used a new notion of search trees called reference search trees providing non-local pointers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domination with propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1–15. Springer, Heidelberg (2007)
Fernau, H., Raible, D.: Exact algorithms for maximum acyclic subgraph on a superclass of cubic graphs. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 144–156. Springer, Heidelberg (2008); long version available as Technical Report 08-5, Technical Reports Mathematics / Computer Science, University of Trier, Germany (2008)
Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination – a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)
Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 152–163. Springer, Heidelberg (2006)
Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1976)
Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results for power domination in graphs. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 172–184. Springer, Heidelberg (2005)
Haynes, T.W., Mitchell Hedetniemi, S., Hedetniemi, S.T., Henning, M.A.: Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529 (2002)
Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination complexity. Inf. Process. Lett. 98(4), 145–149 (2006)
Liao, C.-S., Lee, D.-T.: Power domination problem in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 818–828. Springer, Heidelberg (2005)
Speckennmeyer, E.: On feedback vertex sets and nonseparating independent sets in cubic graphs. Journal of Graph Theory 3, 405–412 (1988)
van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for dominating set. In: STACS 2008, volume 08001 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 657–668 (2008)
Xu, G., Kang, L., Shan, E., Zhao, M.: Power domination in block graphs. Theor. Comput. Sci. 359(1-3), 299–305 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raible, D., Fernau, H. (2008). Power Domination in \(\mathcal{O}^*(1.7548^n)\) Using Reference Search Trees. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)