Abstract
Visual privacy is a sensitive subject because it literally deals with human private parts. It presents a bold challenge to the field of Computer Science. The goal of this study is to build a virtual human model for designing and evaluating visual privacy technologies before a security system is built. Given the available databases of anthropological models from CAESAR, 3D scanners and the physical parameters of human imaging systems, we simulate the scanning imagery data with the High Frequency Structure Simulator (HFSS). The proportion and template matching algorithms have been developed to find the human surface features from 3D scanning data. The concealed object detection algorithms are developed according to the wave intensity and surface characteristics. Then the privacy-aware rendering methods are evaluated by usability studies. This forward-thinking approach intends to transform the development of visual privacy technologies from device-specific and proprietary to device-independent and open source. It also advances privacy research from an ad-hoc problem-solving process to a systematic design process, enabling multi-disciplinary innovations in digital human modeling, computer vision, information visualization, and computational aesthetics.
The results of this study can be used in the privacy-aware imaging systems in airports and medical systems. They can also benefit the custom-fit products that are designed from personal 3D scanning data. Furthermore, our results can be used in the reconstruction of objects in digital archeology and medical imaging technologies such as virtual colonoscopy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Laws, J., Cai, Y.: Feature Hiding in 3D Human Body Scans. Journal of Information Visualization 5(4) (2006), http://www.palgrave-journals.com/ivs/journal/v5/n4/abs/9500136a.html
Laws, J., Cai, Y.: A Privacy Algorithm for 3D Human Body Scans. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 870–877. Springer, Heidelberg (2006)
Cai, Y., et al.: Spatiotemporal data mining for tracking ocean objects. In: Proceedings of IEEE Space Mission Challenges to IT, Pasadena, CA (2006)
Cai, Y., et al.: Visual Transform for spatiotemporal data mining. Journal of Knowledge and Information Systems (to appear, 2007)
BodySearch imaging system, American Science and Engineering, Inc., 829 Middlesex Turnpike, Billerica, MA 01821
Secure 1000 imaging system, IRT Corporation, 6020 Cornerstone Court West, San Diego, CA 92121
McMakin, D.L., Sheen, D.M., Collins, H.D., Hall, T.E., Severtsen, R.H.: Wideband, millimeter-wave, holographic surveillance systems. In: EUROPTO International Symposium on Law Enforcement Technologies: Identification Technologies and Traffic Safety, Munich, FRG, SPIE, vol. 2092, pp. 131–141 (1995)
Sheen, D.M., McMakin, D.L., Collins, H.D.: Circular scanned millimeter-wave imaging system for weapon detection. In: EUROPTO International Symposium on Law Enforcement Technologies: Identification Technologies and Traffic Safety, Munich, FRG, SPIE, vol. 2092, pp. 122–130 (1995)
McMakin, D.L., Sheen, D.M., Collins, H.D., Hall, T.E., Smith, R.R.: Millimeter-wave, high-resolution, holographic surveillance system. In: EUROPTO International Symposium on Substance Identification Technologies, Innsbruck, Austria, SPIE, vol. 2092, pp. 525–535 (1993)
Sheen, D.M., McMakin, D.L., Collins, H.D., Hall, T.E.: Weapon detection using a wideband millimeter-wave linear array imaging technique. In: EUROPTO International Symposium on Substance Identification Technologies, Innsbruck, Austria, SPIE, vol. 2092, pp. 536–547 (1993)
Huguenin, G.R., Goldsmith, P.F., Deo, N.C., Walker, D.K.: Contraband Detection System. U. S. Patent 5, 073, 782 (1991)
Browne, J.: MM waves aid commercial applications. Microwaves and RF, 113–116 (July 1992)
Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York
Soumekh, M.: Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Transactions on Signal Processing 39(9), 2044–2055 (1991)
Soumekh, M.: Fourier Array Imaging. Prentice-Hall, Englewood Cliffs (1994)
Anthropometry Resource (CAESAR), Final Report, vol. I: Summary, AFRL-HE-WP-TR-2002-0169, United States Air Force Research Laboratory, Human Effectiveness Directorate, Crew System Interface Division, 2255 H Street, Wright-Patterson AFB OH 45433-7022 and SAE International, 400 Commonwealth Dr., Warrendale, PA 15096
Bansal, M.: Analysis of curvature in genomic DNA, http://www.ibab.ac.in/bansal.htm
Besl, P.J., Jain, R.C.: Three-dimensional object recognition. ACM Comput. Surveys 17(1), 75–145 (1985)
Brady, M., Ponce, J., Yuille, A., Asada, H.: Describing surfaces. Comput. Vision, Graphics, Image Processing 32, 1–28 (1985)
Calladine, C.R.: Gaussian curvature and shell structures. The Mathematics of Surfaces, pp. 179–196. Oxford University Press, Oxford (1985)
Chen, H.H., Huang, T.S.: Maximal matching of two three-dimensional point sets. In: Proc. ICPR (October 1986)
Coleman, R., Burr, M., Souvaine, D., Cheng, A.: An intuitive approach to measuring protein surface curvature. Proteins: structure, function and bioinformatics 61(4), 1068–1074
Fan, T.G., Medioni, G., Nevatia, R.: Description of surfaces from range data using curvature properties. In: Proc. CVPR (May 1986)
Forsyth, D.A., Fleck, M.M.: Automatic detection of human nudes. International Journal of Computer Vision 32(1), 63–77 (1999)
Forsyth, D.A., Fleck, M.M.: Body Plans. In: Proc. CVPR 1997, pp. 678–683 (1997)
Forsyth, D.A., Fleck, M.M.: Identifying nude pictures. In: Proceeding of Third IEEE Workshop on Applications of Computer Vision, pp. 103–108 (1996)
Goldgof, D.B., Huang, T.S., Lee, H.: Curvature based approach to terrain recognition. Coord. Sci. Lab., Univ. Illinois, Urbana-Champaign, Tech. Note ISP-910 (April 1989)
Goldgof, D.B., Huang, T.S., Lee, H.: Feature extraction and terrain matching. In: Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, Ann Arbor, MI (May 1988)
Goldgof, D.B., Huang, T.S., Lee, H.: A Curvature-Based Approach to Terrain Recognition  11(11), 1213–1217 (1989)
Gordon, G.: Face recognition based on depth and curvature features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, Illinois, pp. 108–110 (1992)
Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Machine Intell. PAMI 9(4), 532–550 (1987)
Jones, P.R.M., Rioux, M.: Three-dimensional surface anthropometry: applications to the human body. Optics and Lasers in Engineering 28, 89–117 (1997)
Li, P., Corner, B.D., Paquette, S.: Evaluation of a surface curvature based landmark extraction method for three dimensional head scans. In: International Ergonomics Conference, Seoul (2003)
Liu, X., Kim, W., Drerup, B.: 3D Characterization and Localization of Anatomical Landmarks of the Foot. In: Proceeding (417), Biomedical Engineering. Acta Press (2004), http://www.actapress.com/PaperInfo.aspx?PaperID=16382
Fleck, M.M., Forsyth, D.A., Bregler, C.: Finding naked people. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 593–602. Springer, Heidelberg (1996)
Ratner, P.: 3-D human modeling and animation. John Wiley & Sons, Chichester (2003)
Robinette, K.M., Blackwell, S., Daanen, H.A.M., Fleming, S., Boehmer, M., Brill, T., Hoeferlin, D., Burnsides, D.: Civilian American and European Surface Anthropometry Resource (2002)
Ioffe, S., Forsyth, D.A.: Probabilistic methods for finding people. International Journal of Computer Vision 43(1), 45–68 (2001)
Sonka, M., et al.: Image processing, analysis and machine vision. PWS Publishing (1999)
Suikerbuik, C.A.M.: Automatic Feature Detection in 3D Human Body Scans. Master thesis INF/SCR-02-23, Institute of Information and Computer Sciences. Utrecht University (2002)
Suikerbuik, R., Tangelder, H., Daanen, H., Oudenhuijzen, A.: Automatic feature detection in 3D human body scans. In: Proceedings of SAE Digital Human Modeling Conference, 04-DHM-52 (2004)
Mathworks MRI Phantom, http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1759&objectType=file
NLM, Visible Human Project, http://www.nlm.nih.gov/research/visible/visible_human.html
DARPA Virtual Soldier, http://www.wired.com/news/medtech/0,1286,60016,00.html
Post-Gazette News about Digital Museum Project, http://www.post-gazette.com/pg/04348/425914.stm
Virtual Colonoscopy, http://www.cs.sunysb.edu/~vislab/sample_images/colonoscopy/
Neill, D.B., Moore, A.W.: Anomalous spatial cluster detection. In: Proc. KDD 2005 Workshop on Data Mining Methods for Anomaly Detection, pp. 41–44 (2005)
Neill, D.B., Moore, A.W.: Rapid detection of significant spatial clusters. In: Proc. 10th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 256–265 (2004)
Salvador, S., Chan, P.: Fastdtw: Toward accurate dynamic time warping in linear time and space. In: KDD Workshop on Mining Temporal and Sequential Data (2004)
Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., Chang, L.-W.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop (2003)
Zhang, J., Zulkernine, M.: Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection. In: Symposium on Network Security and Information Assurance – Proc. of the IEEE International Conference on Communications (ICC), Istanbul, Turkey (June 2006)
Burbeck, K., Nadjm-Tehrani, S.: ADWICE: Anomaly Detection with Real-time Incremental Clustering. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506. Springer, Heidelberg (2005)
Gonzalez, D.D.: An Immuno-Fuzzy Approach to Anomaly Detection. In: The proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZIEEE), May 25-28, vol. 2, pp. 1219–1224 (2003)
Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of the 1995 IEEE Symposium on Information Visualization, Atlanta, Georgia, October 30-31, p. 51 (1995)
Rosenfeld, R.: Digital straight line segments. IEEE Trans. On Computers 23, 1264–1269 (1974)
Oppenheim, A.V., et al.: Signals and Systems. Prentice-Hall, Englewood Cliffs (1983)
Keller, P., McMkin, L., Sheen, D., McKinnon, A., Summet, A.J.: Privacy Algorithm for Cylindrical Holographic Weapons Surveillance Systems. In: Lee, J., Shim, J., Lee, S.-g., Bussler, C.J., Shim, S. (eds.) DEECS 2006. LNCS, vol. 4055, pp. 476–483. Springer, Heidelberg (2006)
Sheen, D.M., et al.: Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. In: AEROSENSE Conference, Proceedings of the SPIE, Orlando, FL, vol. 2755 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cai, Y., Pavlyshak, I., Laws, J., Magargle, R., Hoburg, J. (2008). Augmented Privacy with Virtual Humans. In: Cai, Y. (eds) Digital Human Modeling. Lecture Notes in Computer Science(), vol 4650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89430-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-89430-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89429-2
Online ISBN: 978-3-540-89430-8
eBook Packages: Computer ScienceComputer Science (R0)