[go: up one dir, main page]

Skip to main content

Modeling and Synthesis of Computational Efficient Adaptive Neuro-Fuzzy Systems Based on Matlab

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

  • 2537 Accesses

Abstract

New potential applications for neural networks and fuzzy systems are emerging in the context of ubiquitous computing and ambient intelligence. This new paradigm demands sensitive and adaptive embedded systems able to deal with a large number of stimulus in an efficient way. This paper presents a design methodology, based on a new Matlab tool, to develop computational-efficient neuro-fuzzy systems. To fulfil this objective, we have introduced a particular class of adaptive neuro-fuzzy inference systems (ANFIS) with piecewise multilinear (PWM) behaviour. Results obtained show that the PWM-ANFIS model generates computational-efficient implementations without loss of approximation capabilities or learning performance. The tool has been used to develop both software and hardware approaches as well as special architectures for hybrid hardware/software embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, Part VII. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  2. Acampora, G., Loia., V.: A Proposal of Ubiquitous Fuzzy Computing for Ambient Intelligence. Inf. Science 178, 631–646 (2008); 5, 3005–3009 (2003)

    Article  Google Scholar 

  3. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Systems, Man, and Cybernetics 23(3), 665–685 (1993)

    Article  MathSciNet  Google Scholar 

  4. Buckley, J.J.: Sugeno type controllers are universal controllers. Fuzzy Sets Systems 53(3), 299–303 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kosko, B.: Fuzzy systems as universal approximators. IEEE Transactions on Computers 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  6. Rovatti, R.: Fuzzy piecewise multilinear and piecewise linear systems as universal approximators in Sobolev norms. IEEE Transactions on Fuzzy Systems 6(2), 235–249 (1998)

    Article  Google Scholar 

  7. Zeng, X.-J., Singh, M.G.: Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Transactions on Fuzzy Systems 4(1), 44–63 (1996)

    Article  Google Scholar 

  8. Basterretxea, K., del Campo, I., Tarela, J.M., Bosque, G.: An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design. IEEE Transaction on Neural Networks 18(1), 266–283 (2007)

    Article  Google Scholar 

  9. Echanobe, J., del Campo, I., Bosque, G.: An Adaptive Neuro-Fuzzy System for Efficient Implementations. Inf. Science 178(9), 2150–2162 (2008)

    Google Scholar 

  10. del Campo, I., Echanobe, J., Bosque, G., Tarela, J.M.: Efficient Hardware/Software Implementation of an Adaptive Neuro-Fuzzy System. IEEE Transactions on Fuzzy Systems 16(3), 761–778 (2008)

    Article  Google Scholar 

  11. Lee, S.J., Ouyang, Ch.S.: A Neuro-Fuzzy System Modeling With Self-Constructing Rule Generation and Hybrid SVD-Based Learning. IEEE Transactions on Fuzzy Systems 11(3), 341–353 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosque, G., Echanobe, J., del Campo, I., Tarela, J.M. (2008). Modeling and Synthesis of Computational Efficient Adaptive Neuro-Fuzzy Systems Based on Matlab. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics