Abstract
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert’s variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Chapter PDF
Similar content being viewed by others
References
Perlmutter, J., et al.: Deep brain stimulation. Annual Review of Neuroscience 29, 229–257 (2006)
Sanchez Castro, F.J., et al.: A cross validation study of deep brain stimulation targeting: From experts to atlas-based, segmentation-based and automatic registration algorithms. TMI 25(11) (2006)
Sanchez Castro, F.J., et al.: Feature-segmentation-based registration for fast and accurate deep brain stimulation targeting. In: CARS (2006)
Sanchez Castro, F.J., et al.: Automatic subthalamic nucleus targeting for deep brain stimulation. a validation study. In: CARS (2006)
D’Haese, P.F., et al.: Automatic selection of DBS target points using multiple electrophysiological atlases. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 427–434. Springer, Heidelberg (2005)
Vemuri, B.C., et al.: Image registration via level-set motion: Applications to atlas-based segmentation. MIA 7(1), 1–20 (2003)
Yezzi, A., et al.: A variational framework for joint segmentation and registration. In: MMBIA, pp. 44–51 (2001)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed - algorithms based on hamilton-jacobi formulations. J. of Comp. Physics 79(1), 12–49 (1988)
Duay, V.: Deformation field estimation for atlas registration using the active contour framework. THÈSE NO 3979, EPFL (2007)
Barron, J.L., et al.: Performance of optical flow techniques. Intl. J. Comput. Vision 1, 43–77 (1994)
Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Im. Proc. 10(2), 266–277 (2001)
Thirion, J.P., et al.: Image matching as a diffusion process: an analogy with maxwells demons. MIA 2(3), 243–260 (1998)
Maes, F., et al.: Multiphase multimodality image registration by maximization of mutual information. TMI 16(2), 187–198 (1997)
Rueckert, D., et al.: Nonrigid registration using free-form deformations: Applica- tion to breast MR images. TMI 18(8), 712–721 (1999)
Sanchez Castro, F.J., et al.: Nonrigid medical image registration: Algorithms, validation and applications. THÈSE NO 3817, EPFL (2007)
Hellier, P., et al.: Retrospective evaluation of inter-subject brain registration. TMI 22(9), 1120–1130 (2003)
Charpiat, G., et al.: Shape statistics for image segmentation with prior. In: CVPR, pp. 1–6 (2007)
Pollo, C., et al.: Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J. Neurosurg. 106(1), 36–44 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duay, V., Bresson, X., Castro, J.S., Pollo, C., Cuadra, M.B., Thiran, JP. (2008). An Active Contour-Based Atlas Registration Model Applied to Automatic Subthalamic Nucleus Targeting on MRI: Method and Validation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol 5242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85990-1_118
Download citation
DOI: https://doi.org/10.1007/978-3-540-85990-1_118
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85989-5
Online ISBN: 978-3-540-85990-1
eBook Packages: Computer ScienceComputer Science (R0)