Abstract
Locating Brain tumor segmentation within MR (magnetic resonance) images is integral to the treatment of brain cancer. This segmentation task requires classifying each voxel as either tumor or non-tumor, based on a description of that voxel. Unfortunately, standard classifiers, such as Logistic Regression (LR) and Support Vector Machines (SVM), typically have limited accuracy as they treat voxels as independent and identically distributed (iid). Approaches based on random fields, which are able to incorporate spatial constraints, have recently been applied to brain tumor segmentation with notable performance improvement over iid classifiers. However, previous random field systems involved computationally intractable formulations, which are typically solved using some approximation. Here, we present pseudo-conditional random fields (PCRFs), which achieve accuracy similar to other random fields variants, but are significantly more efficient. We formulate a PCRF as a regularized discriminative classifier that relaxes the classification decision for each voxel by considering the labels and features of neighboring voxels.
Chapter PDF
Similar content being viewed by others
Keywords
- Conditional Random Field
- Segmentation Task
- Tumor Segmentation
- Neighboring Voxels
- Brain Tumor Segmentation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Corso, J.J., Sharon, E., Yuille, A.L.: Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006)
Gering, D.T.: Diagonalized nearest neighbor pattern matching for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 670–677. Springer, Heidelberg (2003)
Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification. IEEE Transactions on Medical Imaging 27(5), 629–640 (2008)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A system for brain tumor volume estimation via mr imaging and fuzzy connectedness. Computational Medical Imaging and Graphics 29(1), 21–34 (2005)
Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: A 3D variational brain tumor segmentation using a high dimensional feature set. In: MMBIA (2007)
Joachims, T.: Making large-scale svm learning practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: NIPS, vol. 14 (2002)
Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Tokyo (2001)
Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 121–132. Springer, Heidelberg (2005)
Lee, C.H., Wang, S., Jiao, F., Schuurmans, D., Greiner, R.: Learning to model spatial dependency: Semi-supervised discriminative random fields. In: NIPS, vol. 19 (2007)
Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
Kumar, S., August, J., Hebert, M.: Exploiting inference for approximate parameter learning in discriminative fields: An empirical study. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 153–168. Springer, Heidelberg (2005)
Lee, C.H., Greiner, R., Zaiane, O.R.: Efficient spatial classification using decoupled conditional random fields. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 272–283. Springer, Heidelberg (2006)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: ICCV, pp. 377–384 (1999)
Schmidt, M.: Automatic brain tumor segmentation. Master’s thesis, University of Alberta (2005)
Garcia, C., Moreno, J.: Kernel based method for segmentation and modeling of magnetic resonance images. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 636–645. Springer, Heidelberg (2004)
Zhang, J., Ma, K., Er, M., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: Int. Workshop on Advanced Image Technology, pp. 207–211 (2004)
Chen, T., Metaxas, D.N.: Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 703–710. Springer, Heidelberg (2003)
Kaus, M., Warfield, S., Nabavi, A., Black, P., Jolesz, F., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218, 586–591 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, CH., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R. (2008). Segmenting Brain Tumors Using Pseudo–Conditional Random Fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol 5241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85988-8_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-85988-8_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85987-1
Online ISBN: 978-3-540-85988-8
eBook Packages: Computer ScienceComputer Science (R0)