[go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 49))

  • 713 Accesses

Abstract

This work presents a method of knowledge discovery in data obtained from Molecular Dynamics Protein Unfolding Simulations. The data under study was obtained from simulations of the unfolding process of the protein Transthyretin (TTR), responsible for amyloid diseases such as Familial Amyloid Polyneuropathy (FAP). Protein unfolding and misfolding are at the source of many amyloidogenic diseases. Thus, the molecular characterization of protein unfolding processes through experimental and simulation methods may be essential in the development of effective treatments. Here, we analyzed the distance variation of each of the 127 amino acids C α (alpha carbon) atoms of TTR to the centre of mass of the protein, along 10 different unfolding simulations - five simulations of WT-TTR and five simulations of L55P-TTR, a highly amyloidogenic TTR variant. Using data mining techniques, and considering all the information of the 10 runs, we identified several clusters of amino acids. For each cluster we selected the representative element and identified events which were used as features. With Association Rules we found patterns that characterize the type of TTR variant under study. These results may help discriminate between amyloidogenic and non-amyloidogenic behaviour among different TTR variants and contribute to the understanding of the molecular mechanisms of FAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large data bases. In: ACM SIGMOD Intl. Conf. On Management of Data, Washington, USA, ACM Press, New York (1993)

    Google Scholar 

  2. Azevedo, P.J.: CAREN A java based Apriori implementation for classification purposes. Technical Report, Universidade do Minho: Departamento de Informática (2005)

    Google Scholar 

  3. Azevedo, P., Silva, C., Rodrigues, J., Ferreira, N., Brito, R.: Detection of Hydrophobic Clusters in Molecular Dynamics Protein Simulations Using Association Rules. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 329–337. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Berry, M.J.A., Linoff, G.S.: Mastering Data Minig (2000)

    Google Scholar 

  5. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: ACM SIGMOD/PODS 1997, pp. 265–276 (1997)

    Google Scholar 

  6. Brito, R., Dubitzky, W., Rodrigues, R.: Protein Folding and Unfolding Simulations A New Challenge for Data Mining. A Journal of Integrative Biology 8(2), 153–166 (2004)

    Article  Google Scholar 

  7. Fayyad (2), U., Piatetsky-Shapiro, Padhraic, S.: From Data Mining to Knowledge Discovery in Databases. In: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)

    Google Scholar 

  8. Fayyad, U., Piatetsky-Shapiro, G.: The KDD Process for Extracting Useful knowledge from Volumes of Data. Communications of the ACM 39(11), 27–34 (1996)

    Article  Google Scholar 

  9. Ferreira, P.G., Silva, C., Brito, R., Azevedo, P.J.: A Closer Look on Protein Unfolding Simulations through Hierarchical Clustering. In: Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology - CIBCB, Hawai, USA, pp. 461–468 (2007)

    Google Scholar 

  10. Gordon, A.D.: Classification, 2nd edn. Chapman & Hall /CRC, Boca Raton (1999)

    MATH  Google Scholar 

  11. Grubmiller, Helmut.: Solvate 1.0. (1996) (accessed, 2007), www.mpibpc.mog.de/groups/grubmueller/start/software/solvet/docu.html

  12. Guralnik, V., Srivastava, J.: Event Detection from Series Data. In: KDD 1999. Department of Computer Science, University of Minnesota, San Diego (1999)

    Google Scholar 

  13. Hamilton, J., Steinrauf, A., Braden, L.K., Liepnieks, B.C., Benson, J., Holmgren, M.D., Sandgren, G., Steen, O.: The X-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30-Met variant to 1.7 A resolution. J. Biol. Chem. 268, 2416–2424 (2003)

    Google Scholar 

  14. Hennig, C.: Package fpc Version 1.1-1 (accessed on 2007), http://cran.rproject.org/wen/packages/fpc/index.html

  15. Kalé, L., Skeel, R., BBhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Philips, J., Shinozaki, A., Varadarajan, K., Schulten, K.: NAMD2: Greater Scability for Parallel Molecular Dynamics. Journal of Computational Physics 151, 283–312 (1999)

    Article  MATH  Google Scholar 

  16. MacKerell, A.D., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J., Field, M.J.: All-atom empirical potencial for molecular modeling and dynamics studies of proteins. J.Phys. Chem. B 102, 3586–3616 (1998)

    Article  Google Scholar 

  17. Pande, V.S., Baker, I., Chapman, J., Elmer, S.P., Khaliq, S., Larson, S.M., Rhee, Y.M., Shirts, M.R., Snow, C.D., Sorin, E.J., Zagrovic, B.: Atomistic protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing. Biopolymers 68, 91–109 (2003)

    Article  Google Scholar 

  18. Scheraga, H., Khalili, M., Liwo, A.: Protein-Folding Dynamics: Overview of Molecular Simulation Techniques. Annu. Rev. Phys. Chem., 57–83 (2007)

    Google Scholar 

  19. Witten, I., Frank, E.: Data Mining: practical machine learning tools abd techniques with Java implementatons, p. 177. Morgan Kaufman Publishers, San Francisco (1999)

    Google Scholar 

  20. Zhang, L., Hermans, J.: Hydrophilicity of cavities in proteins. Proteins: Structure, Function and Genetics 24, 433–438 (1996)

    Article  Google Scholar 

  21. (accessed, May 4, 2008), http://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Juan F. De Paz Miguel P. Rocha Florentino Fernández Riverola

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandes, E., Jorge, A.M., Silva, C.G., Brito, R.M.M. (2009). A Knowledge Discovery Method for the Characterization of Protein Unfolding Processes. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Fernández Riverola, F. (eds) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). Advances in Soft Computing, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85861-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85861-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85860-7

  • Online ISBN: 978-3-540-85861-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics