[go: up one dir, main page]

Skip to main content

Improvement of Intelligent Optimization by an Experience Feedback Approach

  • Conference paper
Artificial Evolution (EA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4926))

Abstract

Intelligent optimization is a domain of evolutionary computation that emerges since a few years. All the methods within this discipline are based on mechanisms for maintaining a set of individuals and, separately, a space of knowledge linked to the individuals. The aim is to make the individuals evolve to reach better solutions generation after generation using the knowledge linked to them. The idea proposed in this paper consists in using previous experiences in order to build the knowledge referential and then accelerate the search process. A method which allows reusing knowledge gained from experience feedback is proposed. This approach has been applied to the problem of selection of project scenario in a multi-objective context. An evolutionary algorithm has been modified in order to allow the reuse of capitalized knowledge. This knowledge is gathered in an influence diagram allowing its reuse by the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Talbi, D.: Application of Optimization Techniques to Parameter Set-up of Industrial Scheduling Software. Computers In Industry 55(2), 105–124 (2005)

    Google Scholar 

  2. Michalski, R.S., Wojtusiak, J., Kaufman, K.A.: Intelligent Optimization via Learnable Evolution Model. In: 18th IEEE Conf. on Tools with Artificial Intelligence, pp. 332–335 (2006)

    Google Scholar 

  3. Russel, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice Hall/Pearson education international, London (2003)

    Google Scholar 

  4. Huyet, A.-L., Paris, J.-L.: Synergy between Evolutionary Optimization and Induction Graphs Learning for Simulated Manufacturing Systems. International Journal of Production Research 42(20), 4295–4313 (2004)

    Article  MATH  Google Scholar 

  5. Sebag, M., Schoenauer, M.: A rule based similarity measure, vol. 837, pp. 119–130. Springer, Heidelberg (1994)

    Google Scholar 

  6. Cervone, K.: Experimental Validations of the Learnable Evolution Model. Congress on Evolutionary Computation, San Diego CA (2000)

    Google Scholar 

  7. Alami, J., El imrani, A.: A multipopulation cultural algorithm using fuzzy clustering. Applied Soft Computing 7(2), 506–519 (2007)

    Article  Google Scholar 

  8. Chung, C.J.: Knowledge based approaches to self adaptation in cultural algorithms, PhD thesis, Wayne State University, Detroit, USA (1997)

    Google Scholar 

  9. Chebel-Morello, B., Lereno, E., Baptiste, P.: A New Algorithm to Select Learning Examples from Learning Data. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 13–15. Springer, Heidelberg (2000)

    Google Scholar 

  10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A new Tool for Evolutionary Computation. Kluwer, Dordrecht (2001)

    Google Scholar 

  11. Miquélez, M., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on Bayesian classifiers. Int. Journal AMCS 14(3), 335–349 (2004)

    MATH  Google Scholar 

  12. Baron, C., Rochet, S., Esteve, D.: GESOS: a multi-objective genetic tool for project management considering technical and non-technical constraints, Art. Intel. Applications and Innovations (AIAI), IFIP World Computer Congress, Toulouse (2004)

    Google Scholar 

  13. Zitzler, E., Thiele, L.: Multi objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. on evolutionary computation 3, n°4, 257–271 (1999)

    Article  Google Scholar 

  14. Watthayu, W., Peng, Y.: A Bayesian network based framework for multi-criteria decision making. In: MCDM 2004, Whistler, Canada (2004)

    Google Scholar 

  15. Becker, A., Naim, P.: Les Réseaux Bayésien: modèles graphique de connaissance, Eyrolles (1999)

    Google Scholar 

  16. Vareilles, E., Aldanondo, M.: Evaluation of a Solution in Interactive Aiding Design Process. In: INCOM 2006, Saint Etienne, France (2006)

    Google Scholar 

  17. Crampes, M.: Méta modèle adaptatif de la pertinence d’un modèle de connaissance. In: RFIA 2004, Toulouse (2004)

    Google Scholar 

  18. Amilastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic CSPs – Application to configuration, vol. 135(1-2), pp. 199–234. Elsevier A.I, Amsterdam (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicolas Monmarché El-Ghazali Talbi Pierre Collet Marc Schoenauer Evelyne Lutton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitiot, P., Coudert, T., Geneste, L., Baron, C. (2008). Improvement of Intelligent Optimization by an Experience Feedback Approach. In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79305-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79304-5

  • Online ISBN: 978-3-540-79305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics