[go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 129))

  • 905 Accesses

Abstract

Nature-inspired metaheuristics are effective strategies for solving optimization problems. However, when trying to solve an instance of this kind of problems it is hard to know which algorithm should be used (algorithm-instance problem). Hybrid systems provide flexible tools that can help to cope with this problem. Therefore a hybrid system based on the intelligent combination of different natureinspired strategies will give more robustness and will allow to find higher quality solutions for different instance types.

In this paper we show the construction of a nature-inspired hybrid system, and analyse a study case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cadenas J.M, Garrido M.C, Hernández L.D, Muñoz E (2006) Towards a definition of a Data Mining process based on Fuzzy Sets for Cooperative Metaheuristic systems. International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU2006, 2828–2835, Paris

    Google Scholar 

  2. Cadenas J.M, Garrido M.C, Liern V, Muñoz E, Serrano E (2007) Un prototipo del coordinador de un Sistema Metaheurstico Cooperativo para el Problema de la Mochila. V congreso espaol sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB07, 811–818, Tenerife

    Google Scholar 

  3. Cohoon J, Martin W, Richards D (1991) A multi-population genetic algorithm for solving the k-partition problem on hyper-cubes. In: Richar K. Velw, Lashon B. Booker (eds) Fourth International Conference on Genetic Algorithms, San Mateo. CA: MOrgan Kaufmann Publishers

    Google Scholar 

  4. Crainic T.G, Gendreau M, Hansen P, Mladenovic N (2004) Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics 10:293–314

    Article  Google Scholar 

  5. Guo H (2003) A Bayesian Approach for Automatic Algorithm Selection. IJCAI03 Workshop on AI and Autonomic Computing, 1–5, Mexico

    Google Scholar 

  6. Janikow C.Z (1998) Fuzzy decision trees: issues and methods. IEEE Transaction System, Man, and Cybernetics, Part B. 28(1):1–14

    Article  Google Scholar 

  7. Le Bouthillier A, Crainic T.G (2003) A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers and Operations Research 32(7):1685–1708

    Article  Google Scholar 

  8. Moreno-Velo F.J, Baturone I, Snchez-Solano S, Barriga A (2001) XFUZZY 3.0: A Development Environment for Fuzzy Systems. International Conference in Fuzzy Logic and Technology, 93–96, Leicester

    Google Scholar 

  9. Pelta D, Cruz C, Sancho-Royo A, Verdegay J.L (2006) Using memory and fuzzy rules in a cooperative multi-thread strategy for optimization. Information Sciences 176(13):1849–1868

    Article  Google Scholar 

  10. Rice J.R (1976) The algorithm selection problem. Advances in Computers 15:65–118

    Google Scholar 

  11. University of Waikato. Weka, Data Mining with Open Source Machine Learning Software in Java. URL: http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadenas, J.M., Garrido, M.C., Muñoz, E. (2008). A Hybrid System of Nature Inspired Metaheuristics. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78987-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78987-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78986-4

  • Online ISBN: 978-3-540-78987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics