[go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents an overview of the teleoperation of robotics systems, starting with a historical background, and including the description of an up-to-date specific teleoperation scheme as a representative example to illustrate the typical components and functional modules of these systems. Some specific topics in the field are particularly discussed, for instance, control algorithms, communications channels, the use of graphical simulation and task planning, the usefulness of virtual and augmented reality, and the problem of dexterous grasping. The second part of the chapter includes a description of the most typical application fields, such as industry and construction, mining, underwater, space, surgery, assistance, humanitarian demining, and education, where some of the pioneering, significant, and latest contributions are briefly presented. Finally, some conclusions and the trends in the field close the chapter.

The topics of this chapter are closely related to the contents of other chapters such as those on Communication in Automation, Including Networking and Wireless (Chap. 13), Virtual Reality and Automation (Chap. 15), and Collaborative Human–Automation Decision Making (Chap. 26).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-D:

three-dimensional

AUV:

autonomous underwater vehicle

CURV:

cable-controlled undersea recovery vehicle

DOF:

degrees of freedom

HCI:

human–computer interaction

HMD:

helmet-mounted display

HMI:

human machine interface

IP:

inaction–penalty

IP:

industrial protocol

IP:

integer programming

IP:

intellectual property

IP:

internet protocol

IPv6:

internet protocol version 6

ISS:

input-to-state stability

LHD:

load–haul–dump

MIS:

management information system

MIS:

minimally invasive surgery

NASA:

National Aeronautics and Space Administration

PC:

personal computer

PD:

pharmacodynamics

PMF:

positioning mobile with respect to fixed

QoS:

quality of service

ROV:

remotely operated underwater vehicle

TCP:

transmission control protocol

TSCM:

thin-seam continuous mining

UDP:

user datagram protocol

UPC:

universal product code

VII:

vehicle infrastructure integration

References

  1. T. Sheridan: Telerobotics, Automation and Human Supervisory Control (MIT Press, Cambridge 1992)

    Google Scholar 

  2. E. Nuño, A. Rodríguez, L. Basañez: Force reflecting teleoperation via IPv6 protocol with geometric constraints haptic guidance. In: Advances in Telerobotics, STAR, Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 445–458

    Chapter  Google Scholar 

  3. R.J. Anderson, M.W. Spong: Bilateral control of teleoperators with time delay, IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  4. G. Niemeyer, J.J.E. Slotine: Stable adaptive teleoperation, IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  5. P. Arcara, C. Melchiorri: Control schemes for teleoperation with time delay: A comparative study, Robot. Auton. Syst. 38, 49–64 (2002)

    Article  MATH  Google Scholar 

  6. P.F. Hokayem, M.W. Spong: Bilateral teleoperation: An historical survey, Automatica 42, 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Ortega, N. Chopra, M.W. Spong: A new passivity formulation for bilateral teleoperation with time delays, Proc. CNRS-NSF Workshop: Advances in time-delay systems (Paris, 2003)

    Google Scholar 

  8. E. Nuño, L. Basañez, R. Ortega: Passive bilateral teleoperation framework for assisted robotic tasks, Proc. IEEE Int. Conf. Robot. Autom. (Rome, 2007) pp. 1645–1650

    Google Scholar 

  9. S. Munir, W.J. Book: Control techniques and programming issues for time delayed internet based teleoperation, ASME J. Dyn. Syst. Meas. Control 125(2), 205–214 (2004)

    Article  Google Scholar 

  10. S.E. Salcudean, M. Zhu, W.-H. Zhu, K. Hashtrudi-Zaad: Transparent bilateral teleoperation under position and rate control, Int. J. Robot. Res. 19(12), 1185–1202 (2000)

    Article  Google Scholar 

  11. N. Chopra, M.W. Spong, R. Ortega, N. Barbanov: On tracking performance in bilateral teleoperation, IEEE Trans. Robot. 22(4), 844–847 (2006)

    Article  Google Scholar 

  12. T. Namerikawa, H. Kawada: Symmetric impedance matched teleoperation with position tracking, Proc. 45th IEEE Conf. Decis. Control (San Diego, 2006) pp. 4496–4501

    Google Scholar 

  13. E. Nuño, R. Ortega, N. Barabanov, L. Basañez: A globally stable proportional plus derivative controller for bilateral teleoperators, IEEE Trans. Robot. 24(3), 753–758 (2008)

    Google Scholar 

  14. R. Lozano, N. Chopra, M.W. Spong: Convergence analysis of bilateral teleoperation with constant human input, Proc. Am. Control Conf. (New York 2007) pp. 1443–1448

    Google Scholar 

  15. R. Lozano, N. Chopra, M.W. Spong: Passivation of force reflecting bilateral teleoperators with time varying delay, Proc. Mechatron. Conf. (Entschede 2002)

    Google Scholar 

  16. N. Chopra, M.W. Spong: Adaptive synchronization of bilateral teleoperators with time delay. In: Advances in Telerobotics, STAR, Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 257–270

    Chapter  Google Scholar 

  17. C. Secchi, S. Stramigioli, C. Fantuzzi: Variable delay in scaled port-Hamiltonian telemanipulation, Proc. 8th Int. IFAC Symp. Robot Control (Bologna 2006)

    Google Scholar 

  18. M. Boukhnifer, A. Ferreira: Wave-based passive control for transparent micro-teleoperation system, Robot. Auton. Syst. 54(7), 601–615 (2006)

    Article  Google Scholar 

  19. P. Loshin: IPv6, Theory, Protocol, and Practice, 2nd edn. (Morgan Kaufmann, San Francisco 2003)

    Google Scholar 

  20. W.R. Sherman, A. Craig: Understanding Virtual Reality. Interface, Application and Design (Morgan Kaufmann, San Francisco 2003)

    Google Scholar 

  21. R. Azuma: A survey of augmented reality, Presence Teleoper. Virtual Environ. 6(4), 355–385 (1997)

    Google Scholar 

  22. M. Inami, N. kawakami, S. Tachi: Optical camouflage using retro-reflective projection technology, Proc. Int. Symp. Mixed Augment. Real. (Tokyo 2003) pp. 18–22

    Google Scholar 

  23. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julien, B. MacIntyre: Recent advances in augmented reality, IEEE Comp. Graphics Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  24. A. Rastogi, P. Milgram, J. Grodski: Augmented telerobotic control: A visual interface for unstructured environments, Proc. KBS/Robot. Conf. (Montreal 1995)

    Google Scholar 

  25. A. Kron, G. Schimdt, B. Petzold, M. Zäh, P. Hinterseer, E. Steinbach: Disposal of explosive ordnances by use of a bimanual haptic system, Proc. IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 1968–1973

    Google Scholar 

  26. A. Ansar, D. Rodrigues, J. Desai, K. Daniilidis, V. Kumar, M. Campos: Visual and haptic collaborative tele-presence, Comput. Graph. 25(5), 789–798 (2001)

    Article  Google Scholar 

  27. B. Dejong, E. Faulring, E. Colgate, M. Peshkin, H. Kang, Y. Park, T. Erwing: Lessons learned froma novel teleoperation testbed, Ind. Robot: Int. J. 33(3), 187–193 (2006)

    Article  Google Scholar 

  28. Y. Xiong, S. Li, M. Xie: Predictive display and interaction of telerobots based on augmented reality, Robotica 24, 447–453 (2006)

    Article  Google Scholar 

  29. S. Otmane, M. Mallem, A. Kheddar, F. Chavand: Active virtual guides as an apparatus for augmented reality based telemanipulation system on the internet, Proc. 33rd Annu. Simul. Symp. (Washington 2000) pp. 185–191

    Google Scholar 

  30. J. Gu, E. Auguirre, P. Cohen: An augmented reality interface for telerobotic applications, Proc. Workshop Appl. Comput. Vis. (Orlando 2002) pp. 220–224

    Google Scholar 

  31. A. Rodríguez, L. Basañez, E. Celaya: A Relational Positioning Methodology for Robot Task Specification and Execution, IEEE Trans. Robot. 24(3), 600–611 (2008)

    Article  Google Scholar 

  32. Y.H. Liu: Computing n-finger form-closure grasps on polygonal objects, Int. J. Robot. Res. 19(2), 149–158 (2000)

    Article  Google Scholar 

  33. D. Ding, Y. Liu, S. Wang: Computation of 3-D form-closure grasps, IEEE Trans. Robot. Autom. 17(4), 515–522 (2001)

    Article  Google Scholar 

  34. M. Roa, R. Suárez: Finding locally optimum force-closure grasps, Robot. Comput.-Integr. Manuf. 25, 536–544 (2009)

    Google Scholar 

  35. J. Cornellà, R. Suárez, R. Carloni, C. Melchiorri: Dual programming based approach for optimal grasping force distribution, Mechatronics 18(7), 348–356 (2008)

    Google Scholar 

  36. T.B. Martin, R.O. Ambrose, M.A. Diftler, R. Platt, M.J. Butzer: Tactile gloves for autonomous grasping with the NASA/DARPA Robonaut, Proc. IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 1713–1718

    Google Scholar 

  37. M. Bergamasco, A. Frisoli, C. A. Avizzano: Exoskeletons as man–machine interface systems for teleoperation and interaction in virtual environments. In: Advances in Telerobotics STAR Ser., Vol. 31 (Springer, New York 2007) pp. 61–76

    Google Scholar 

  38. S.B. Kang, K. Ikeuchi: Grasp recognition using the contact web, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Raleigh 1992) pp. 194–201

    Google Scholar 

  39. R.L. Feller, C.K.L. Lau, C.R. Wagner, D.P. Pemn, R.D. Howe: The effect of force feedback on remote palpation, Proc. IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 782–788

    Google Scholar 

  40. M. Benali-Khoudja, M. Hafez, J.M. Alexandre, A. Kheddar: Tactile interfaces: a state-of-the-art survey, Proc. 35th Int. Symp. Robot. (Paris 2004) pp. 721–726

    Google Scholar 

  41. T. Wotjara, K. Nonami: Hand posture detection by neural network and grasp mapping for a master–slave hand system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Sendai 2004) pp. 866–871

    Google Scholar 

  42. M. Roa, R. Suárez: Independent contact regions for frictional grasps on 3-D objects, Proc. IEEE Int. Conf. Robot. Autom. (Pasadena 2008)

    Google Scholar 

  43. K.B. Shimoga: Robot grasp synthesis algorithms: a survey, Int. J. Robot. Res. 15(3), 230–266 (1996)

    Article  Google Scholar 

  44. R. Suárez, P. Grosch: Mechanical hand MA-I as experimental system for grasping and manipulation, Video Proc. IEEE Int. Conf. Robot. Autom. (Barcelona 2005)

    Google Scholar 

  45. A. Iborra, J.A. Pastor, B. Alvarez, C. Fernandez, J.M. Fernandez: Robotics in radioactive environments, IEEE Robot. Autom. Mag. 10(4), 12–22 (2003)

    Article  Google Scholar 

  46. W. Book, L. Love: Teleoperation telerobotics telepresence. In: Handbook of Industrial Robotics, 2nd edn. (Wiley, New York 1999) pp. 167–186

    Chapter  Google Scholar 

  47. R. Aracil, M. Ferre: Telerobotics for aerial live power line maintenance. In: Advances in Telerobotics, STAR Ser., Vol. 31, (Springer, Berlin, Heidelberg 2007) 459–469

    Google Scholar 

  48. J.H. Dunlap, J.M. Van Name, J.A. Henkener: Robotic maintenance of overhead transmission lines, IEEE Trans. Power Deliv. 1(3), 280–284 (1986)

    Article  Google Scholar 

  49. R. Aracil, M. Ferre, M. Hernando, E. Pinto, J.M. Sebastian: Telerobotic system for live-power line maintenance: ROBTET, Control Eng. Prac. 10(11), 1271–1281 (2002)

    Article  Google Scholar 

  50. C.T. Haas, Y.S. Ki: Automation in infrastructure construction, Constr. Innov. 2, 191–210 (2002)

    Article  Google Scholar 

  51. Y. Hiramatsu, T. Aono, M. Nishio: Disaster restoration work for the eruption of Mt Usuzan using an unmanned construction system, Adv. Robot. 16(6), 505–508 (2002)

    Article  Google Scholar 

  52. A.M. Lytle, K.S. Saidi, R.V. Bostelman, W.C. Stones, N.A. Scott: Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane, Autom. Constr. 13, 101–118 (2004)

    Article  Google Scholar 

  53. A.J. Kwitowski, W.D. Mayercheck, A.L. Brautigam: Teleoperation for continuous miners and haulage equipment, IEEE Trans. Ind. Appl. 28(5), 1118–1125 (1992)

    Article  Google Scholar 

  54. G. Baiden, M. Scoble, S. Flewelling: Robotic systems development for mining automation, Bull. Can. Inst. Min. Metall. 86.972, 75–77 (1993)

    Google Scholar 

  55. J.C. Ralston, D.W. Hainsworth, D.C. Reid, D.L. Anderson, R.J. McPhee: Recent advances in remote coal mining machine sensing, guidance, and teleoperation, Robotica 19(4), 513–526 (2001)

    Google Scholar 

  56. A.J. Park, R.N. Kazman: Augmented reality for mining teleoperation, Proc. of SPIE Int. Symp. Intell. Syst. Adv. Manuf. – Telemanip. Telepresence Technol. (1995) pp. 119–129

    Google Scholar 

  57. T.J. Nelson, M.R. Olson: Long delay telecontrol of lunar mining equipment, Proc. 6th Int. Conf. Expo. Eng., Constr., Oper. Space, ed. by R.G. Galloway, S. Lokaj (Am. Soc. Civ. Eng., Reston 1998) pp. 477–484

    Google Scholar 

  58. N. Wilkinson: Cooperative control in teleoperated mining environments, 55th Int. Astronaut. Congr. Int. Astronaut. Fed., Int. Acad. Astronaut. Int. Inst. Space Law (Vancouver 2004)

    Google Scholar 

  59. P. Ridao, M. Carreras, E. Hernandez, N. Palomeras: Underwater telerobotics for collaborative research. In: Advances in Telerobotics, STAR Ser., Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 347–359

    Google Scholar 

  60. S. Harris, R. Ballard: ARGO: Capabilities for deep ocean exploration, Oceans 18, 6–8 (1986)

    Google Scholar 

  61. M. Fontolan: Prestige oil recovery from the sunken part of the Wreck, PAJ Oil Spill Symp. (Petroleum Association of Japan, Tokyo 2005)

    Google Scholar 

  62. G. Antonelli (Ed.): Underwater Robots: Motion and Force Control of Vehicle–Manipulator Systems (Springer, Berlin 2003)

    MATH  Google Scholar 

  63. C. Canudas-de-Wit, E.O. Diaz, M. Perrier: Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, Proc. IEEE Int. Conf. Robot. Autom. (Leuven 1998) pp. 452–457

    Google Scholar 

  64. M. Lee, H-S. Choi: A robust neural controller for underwater robot manipulators, IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)

    Article  Google Scholar 

  65. J. Kumagai: Swimming to Europe, IEEE Spectrum 44(9), 33–40 (2007)

    Article  Google Scholar 

  66. L. Pedersen, D. Kortenkamp, D. Wettergreen, I. Nourbakhsh: A survey of space robotics, Proc. 7th Int. Symp. Artif. Intell., Robot. Autom. Space (Nara 2003)

    Google Scholar 

  67. F. Doctor, A Glas, Z. Pronk: Mission preparation support of the European Robotic Arm (ERA), National Aerospace Laboratory report NLR-TP-2002-650 (Netherlands 2003)

    Google Scholar 

  68. S. Roderick, B. Roberts, E. Atkins, D. Akin: The ranger robotic satellite servicer and its autonomous software-based safety system, IEEE Intell. Syst. 19(5), 12–19 (2004)

    Article  Google Scholar 

  69. W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, F. Rehnmark, C. Lovchik, D. Magruder: Robonaut: A robot designed to work with humans in spaces, Auton. Robots 14, 179–197 (2003)

    Article  MATH  Google Scholar 

  70. G. Hirzinger, B. Brunner, K. Landzettel, N. Sporer, J. Butterfass, M. Schedl: Space Robotics – DLRʼs telerobotic concepts, lightweight arms and articulated hands, Auton. Robots 14, 127–145 (2003)

    Article  MATH  Google Scholar 

  71. S.E. Fredrickson, S. Duran, J.D. Mitchell: Mini AERCam inspection robot for human space missions, AIAA Space 2004 Conf. Exhib. (San Diego 2004)

    Google Scholar 

  72. T. Imaida, Y. Yokokohji, T. Doi, M. Oda, T. Yoshikawa: Ground–space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition, IEEE Trans. Robot. Autom. 20(3), 499–511 (2004)

    Article  Google Scholar 

  73. R.A. Lindemann, D.B. Bickler, B.D. Harrington, G.M. Ortiz, C.J. Voorhees: Mars exploration rover mobility development, IEEE Robot. Autom. Mag. 13(2), 19–26 (2006)

    Article  Google Scholar 

  74. G.A. Landis: Robots and humans: synergy in planetary exploration, Acta Astronaut. 55(12), 985–990 (2004)

    Article  Google Scholar 

  75. J.W. Hill, P.S. Green, J.F. Jensen, Y. Gorfu, A.S. Shah: Telepresence surgery demonstration system, Proc. IEEE Int. Conf. Robot. Autom. (IEEE Computer Society, San Diego 1994) pp. 2302–2307

    Google Scholar 

  76. J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.E. Butner, M. Smith: Transatlantic robot-assisted telesurgery, Nature 413, 379–380 (2001)

    Article  Google Scholar 

  77. S.E. Butner, M. Ghodoussi: A real-time system for tele-surgery, Proc. 21st Int. Conf. Distrib. Comput. Syst. (IEEE Computer Society, Washington 2001) pp. 236–243

    Google Scholar 

  78. G.S. Guthart, J.K. Jr. Salisbury: The Intuitive telesurgery system: overview and application, Proc. IEEE Int. Conf. Robot. Autom. (San Francisco 2000) pp. 618–621

    Google Scholar 

  79. M. Li, A. Kapoor, R.H. Taylor: Telerobotic control by virtual fixtures for surgical applications. In: Advances in Telerobotics, STAR, Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 381–401

    Chapter  Google Scholar 

  80. A. Smith, J. Smith, D.G. Jayne: Telerobotics: surgery for the 21st century, Surgery 24(2), 74–78 (2006)

    Google Scholar 

  81. M. Topping: An Overview of the development of Handy 1, a rehabilitation robot to assist the severely disabled, J. Intell. Robot. Syst. 34(3), 253–263 (2002)

    Article  MATH  Google Scholar 

  82. C. Balaguer, A. Giménez, A. Jardón, R. Correal, S. Martínez, A.M. Sabatini, V. Genovese: Proprio, teleoperation of a robotic system for disabled personsʼ assistance in domestic environments. In: Advances in Telerobotics, STAR, Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 415–427

    Chapter  Google Scholar 

  83. O. Reinoso, C. Fernández, R. Ñeco: User voice assistance tool for teleoperation. In: Advances in Telerobotics, STAR Ser., Vol. 31 (Springer, Berlin, Heidelberg 2007) pp. 107–120

    Google Scholar 

  84. K. Kawamura, M. Iskarous: Trends in service robots for the disabled and the elderly, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst. (Munich 1994) pp. 1647–1654

    Google Scholar 

  85. G. Pires, U. Nunes: A wheelchair steered through voice commands and assisted by a reactive fuzzy logic controller, J. Intell. Robot. Syst. 34(3), 301–314 (2002)

    Article  MATH  Google Scholar 

  86. P. Hoppenot, E. Colle: Human-like behavior robot-application to disabled people assistance, Proc. IEEE Int. Conf. Syst., Man, Cybern. (Soc. Syst. Man Cyber., Nashville 2000) pp. 155–160, .

    Google Scholar 

  87. M.E. Pollack, S. Engberg, J.T. Matthews, S. Thrun, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ramakrishnan, J. Dunbar-Jacob, C. McCarthy, M. Montemerlo, J. Pineau, N. Roy: Pearl: A mobile robotic assistant for the elderly, AAAI Workshop Autom. Eldercare (Alberta 2002)

    Google Scholar 

  88. T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, D. Waterman, Y. Nobumoto: Hydraulic master–slave land mine clearance robot hand controlled by pulse modulation, Mechatronics 15, 589–609 (2005)

    Article  Google Scholar 

  89. K. Kato, S. Hirose: Development of the quadruped walking robot, TITAN-IX–mechanical design concept and application for the humanitarian demining robot, Adv. Robot. 15(2), 191–204 (2001)

    Article  Google Scholar 

  90. P. Gonzalez de Santos, E. Garcia, J.A. Cobano, A. Ramirez: SILO6: A six-legged robot for humanitarian demining tasks, Proc. 10th Int. Symp. Robot. Appl. World Autom. Congr. (2004)

    Google Scholar 

  91. J.-D. Nicoud: Vehicles and robots for humanitarian demining, Ind. Robot 24(2), 164–168 (1997)

    Article  Google Scholar 

  92. M.K. Habib: Humanitarian demining: reality and the challenge of technology – the state of the arts, Int. J. Adv. Robot. Syst. 4(2), 151–172 (2007)

    Google Scholar 

  93. C.S. Tzafestas, N. Palaiologou, M. Alifragis: Virtual and remote robotic laboratory: comparative experimental evaluation, IEEE Trans. Educ. 49(3), 360–369 (2006)

    Article  Google Scholar 

  94. X. Giralt, D. Jofre, R. Costa, L. Basañez: Proyecto de Laboratorio Remoto de Automática: Objetivos y Arquitectura Propuesta, III Jornadas de Trabajo EIWISA 02, Enseñanza vía Internet/Web de la Ingeniería de Sistemas y Automática (Alicante, 2002) pp. 93–98, in Spanish

    Google Scholar 

  95. M. Alencastre, L. Munoz, I. Rudomon: Teleoperating robots in multiuser virtual environments, Proc. 4th Mexican Int. Conf. Comp. Sci. (Tlaxcala 2003) pp. 314–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Basañez Prof or Raúl Suárez PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basañez, L., Suárez, R. (2009). Teleoperation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics