Abstract
Query performance prediction aims to estimate the quality of answers that a search system will return in response to a particular query. In this paper we propose a new family of pre-retrieval predictors based on information at both the collection and document level. Pre-retrieval predictors are important because they can be calculated from information that is available at indexing time; they are therefore more efficient than predictors that incorporate information obtained from actual search results. Experimental evaluation of our approach shows that the new predictors give more consistent performance than previously proposed pre-retrieval methods across a variety of data types and search tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bailey, P., Craswell, N., Hawking, D.: Engineering a multi-purpose test collection for web retrieval experiments. Information Processing and Management 39(6), 853–871 (2003)
Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
Buckley, C., Voorhees, E.M.: Retrieval system evaluation. In: Voorhees, E.M., Harman, D.K. (eds.) TREC: experiment and evaluation in information retrieval, MIT Press, Cambridge (2005)
Carmel, D., Yom-Tov, E., Soboroff, I.: SIGIR workshop report: predicting query difficulty - methods and applications. SIGIR Forum 39(2), 25–28 (2005)
Clarke, C., Craswell, N., Soboroff, I.: Overview of the TREC, terabyte track. In: The Thirteenth Text REtrieval Conference (TREC 2004), Gaithersburg, MD, 2005. National Institute of Standards and Technology Special Publication 500-261 (2004)
Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Tampere, Finland, pp. 299–306 (2005)
Freund, J.E.: Modern Elementary Statistics, 10th edn. (2001)
Harman, D., Buckley, C.: The NRRC reliable information access (RIA) workshop. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Sheffield, United Kingdom, pp. 528–529 (2004)
He, B., Ounis, I.: Query performance prediction. Information System 31(7), 585–594 (2006)
Kwok, K.L.: An attempt to identify weakest and strongest queries. In: Predicting Query Difficulty, SIGIR 2005 Workshop (2005)
Scholer, F., Williams, H.E., Turpin, A.: Query association surrogates for web search. Journal of the American Society for Information Science and Technology 55(7), 637–650 (2004)
Sheskin, D.: Handbook of parametric and nonparametric statistical proceedures. CRC Press, Boca Raton (1997)
Sparck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments. Part 1. Information Processing and Management 36(6), 779–808 (2000)
Voorhees, E.M.: Overview of the TREC, robust retrieval track. In: The Fourteenth Text REtrieval Conference (TREC 2005), Gaithersburg, MD, 2006. National Institute of Standards and Technology Special Publication 500-266 (2005)
Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edn. Morgan Kaufmann, San Francisco (1999)
Yom-Tov, E., Fine, S., Carmel, D., Darlow, A.: Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Salvador, Brazil, pp. 512–519 (2005)
Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Transactions On Information Systems 22(2), 179–214 (2004)
Zhou, Y., Croft, W.B.: Ranking robustness: a novel framework to predict query performance. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Arlington, Virginia, pp. 567–574 (2006)
Zhou, Y., Croft, W.B.: Query performance prediction in web search environments. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, pp. 543–550 (2007)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2) (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, Y., Scholer, F., Tsegay, Y. (2008). Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds) Advances in Information Retrieval. ECIR 2008. Lecture Notes in Computer Science, vol 4956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78646-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-78646-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78645-0
Online ISBN: 978-3-540-78646-7
eBook Packages: Computer ScienceComputer Science (R0)