Abstract
The study of emotions in human-computer interaction is a growing research area. Focusing on automatic emotion recognition, work is being performed in order to achieve good results particularly in speech and facial gesture recognition. In this paper we present a study performed to analyze different machine learning techniques validity in automatic speech emotion recognition area. Using a bilingual affective database, different speech parameters have been calculated for each audio recording. Then, several machine learning techniques have been applied to evaluate their usefulness in speech emotion recognition, including techniques based on evolutive algorithms (EDA) to select speech feature subsets that optimize automatic emotion recognition success rate. Achieved experimental results show a representative increase in the success rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Casacuberta, D.: La mente humana: Diez Enigmas y 100 preguntas, Océano, Barcelona, Spain (2001)
Picard, R.W.: Affective Computing. The MIT Press, Cambridge, Massachusetts (1997)
Tao, J., Tan, T.: Affective computing: A review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005)
Cowie, R., Douglas-Cowie, E., Cox, C.: Beyond emotion archetypes: databases for emotion modelling using neural networks. Neural Network 18(4), 371–388 (2005)
Humaine, Retrieved (January 10, 2007), http://emotion-research.net/wiki/databases
López, J.M., Cearreta, I., Fajardo, I., Garay, N.: Validating a multilingual and multimodal affective database. In: Proc. HCII, Beijing, China. LNCS, vol. 4560, pp. 422–431. Springer, Heidelberg (2007)
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S.D., Fellenz, W.A., Taylor, J.G.: Emotion recognition in human-computer interaction. Signal Processing Magazine, IEEE 18(1), 32–80 (2001)
Schröder, M.: Speech and emotion research: An overview of research frameworks and a dimensional approach to emotional speech synthesis. PhD thesis, Institute of Phonetics, Saarland University (2004)
Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotions in speech. In: Proc. ICSLP 1996, Philadelphia, PA, vol. 3, pp. 1970–1973 (1996)
Taylor, J.G., Scherer, K.R., Cowie, R.: Neural network. Special issue: Emotion and brain 18(4), 313–455 (2005)
Huber, R., Batliner, A., Buckow, J., Noth, E., Warnke, V., Niemann, H.: Recognition of emotion in a realistic dialogue scenario. In: Proc. Int. Conf. on Spoken Language Processing, Beijing, China, vol. 1, pp. 665–668 (October 2000)
Ekman, P., Friesen, W.V.: Pictures of facial affect. Consulting Psychologist Press, Palo Alto, CA (1976)
López, J.M., Cearreta, I., Garay, N., López de Ipiña, K., Beristain, A.: Creación de una base de datos emocional bilingüe y multimodal. In: Redondo, M.A., Bravo, C., Ortega, M. (eds.) Proceeding of the 7th Spanish Human Computer Interaction Conference, Interacción 2006, Puertollano, pp. 55–66 (2006)
Laukka, P.: Vocal Expression of Emotion: Discrete-emotions and Dimensional Accounts. PhD thesis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences (2004)
Sun, X.: Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In: Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida (2002)
Fernandez, R.: A Computational Model for the Automatic Recognition of Affect in Speech. PhD thesis, Massachusetts Institute of Technology (2004)
Kazemzadeh, A., Lee, S., Narayanan, S.: Acoustic correlates of user response to errors in human-computer dialogues. In: Proc. IEEE ASRU, St. Thomas, U.S. Virgin Islands (December 2003)
Bachorowski, J.-A., Owren, M.J.: Vocal expression of emotion: acoustic properties of speech are associated with emotional intensity and context. Psychological Science 6(4), 219–224 (1995)
Rothkrantz, L.J.M., Wiggers, P., van Wees, J.W.A., van Vark, R.J.: Voice stress analysis. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 449–456. Springer, Heidelberg (2004)
Martin, K.: An exact probability metric for decision tree splitting and stopping. Mach. Learn. 28(2-3), 257–291 (1997)
Mingers, J.: A comparison of methods of pruning induced rule trees, Technical Report, Coventry, England: University of Warwick, School of Industrial and Business Studies (1988)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (2003)
Quinlan, R.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)
Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Recognition Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)
Ting, K.M.: Common issues in Instance-Based and Naive-Bayesian classifiers. PhD thesis, Baser Department of Computer Science, The University of Sidney, Australia (1995)
Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++: A machine learning library in C++. In: Tools with Artificial Intelligence, pp. 234–245. IEEE Computer Society Press, Los Alamitos (1996)
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)
Wettschereck, D.: A study of distance-based machine learning algorithms. PhD thesis, Adviser-Thomas G. Dietterich (1994)
Minsky, M.: Steps towards artificial intelligence. In: Feigenbaum, E.A., Feldman, J. (eds.) Computers and Thought, pp. 406–450. McGraw-Hill, New York (1963)
Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)
Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Dordrecht (1998)
Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by bayesian network-based optimization. Artificial Intelligence 123(1-2), 157–184 (2000)
Stone, M.: Cross-validatory choice and assessment of statistical procedures. Journal of the Royal Statistical Society 36, 111–157 (1974)
Gunes, V., Menard, M., Loonis, P., Petit-Renaud, S.: Combination, cooperation and selection of classifiers: A state of the art. International Journal of Pattern Recognition 17, 1303–1324 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Álvarez, A. et al. (2007). Application of Feature Subset Selection Based on Evolutionary Algorithms for Automatic Emotion Recognition in Speech. In: Chetouani, M., Hussain, A., Gas, B., Milgram, M., Zarader, JL. (eds) Advances in Nonlinear Speech Processing. NOLISP 2007. Lecture Notes in Computer Science(), vol 4885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77347-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-77347-4_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77346-7
Online ISBN: 978-3-540-77347-4
eBook Packages: Computer ScienceComputer Science (R0)