[go: up one dir, main page]

Skip to main content

Application of Feature Subset Selection Based on Evolutionary Algorithms for Automatic Emotion Recognition in Speech

  • Conference paper
Advances in Nonlinear Speech Processing (NOLISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4885))

Included in the following conference series:

Abstract

The study of emotions in human-computer interaction is a growing research area. Focusing on automatic emotion recognition, work is being performed in order to achieve good results particularly in speech and facial gesture recognition. In this paper we present a study performed to analyze different machine learning techniques validity in automatic speech emotion recognition area. Using a bilingual affective database, different speech parameters have been calculated for each audio recording. Then, several machine learning techniques have been applied to evaluate their usefulness in speech emotion recognition, including techniques based on evolutive algorithms (EDA) to select speech feature subsets that optimize automatic emotion recognition success rate. Achieved experimental results show a representative increase in the success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Casacuberta, D.: La mente humana: Diez Enigmas y 100 preguntas, Océano, Barcelona, Spain (2001)

    Google Scholar 

  2. Picard, R.W.: Affective Computing. The MIT Press, Cambridge, Massachusetts (1997)

    Google Scholar 

  3. Tao, J., Tan, T.: Affective computing: A review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cowie, R., Douglas-Cowie, E., Cox, C.: Beyond emotion archetypes: databases for emotion modelling using neural networks. Neural Network 18(4), 371–388 (2005)

    Article  Google Scholar 

  5. Humaine, Retrieved (January 10, 2007), http://emotion-research.net/wiki/databases

  6. López, J.M., Cearreta, I., Fajardo, I., Garay, N.: Validating a multilingual and multimodal affective database. In: Proc. HCII, Beijing, China. LNCS, vol. 4560, pp. 422–431. Springer, Heidelberg (2007)

    Google Scholar 

  7. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S.D., Fellenz, W.A., Taylor, J.G.: Emotion recognition in human-computer interaction. Signal Processing Magazine, IEEE 18(1), 32–80 (2001)

    Article  Google Scholar 

  8. Schröder, M.: Speech and emotion research: An overview of research frameworks and a dimensional approach to emotional speech synthesis. PhD thesis, Institute of Phonetics, Saarland University (2004)

    Google Scholar 

  9. Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotions in speech. In: Proc. ICSLP 1996, Philadelphia, PA, vol. 3, pp. 1970–1973 (1996)

    Google Scholar 

  10. Taylor, J.G., Scherer, K.R., Cowie, R.: Neural network. Special issue: Emotion and brain 18(4), 313–455 (2005)

    Google Scholar 

  11. Huber, R., Batliner, A., Buckow, J., Noth, E., Warnke, V., Niemann, H.: Recognition of emotion in a realistic dialogue scenario. In: Proc. Int. Conf. on Spoken Language Processing, Beijing, China, vol. 1, pp. 665–668 (October 2000)

    Google Scholar 

  12. Ekman, P., Friesen, W.V.: Pictures of facial affect. Consulting Psychologist Press, Palo Alto, CA (1976)

    Google Scholar 

  13. López, J.M., Cearreta, I., Garay, N., López de Ipiña, K., Beristain, A.: Creación de una base de datos emocional bilingüe y multimodal. In: Redondo, M.A., Bravo, C., Ortega, M. (eds.) Proceeding of the 7th Spanish Human Computer Interaction Conference, Interacción 2006, Puertollano, pp. 55–66 (2006)

    Google Scholar 

  14. Laukka, P.: Vocal Expression of Emotion: Discrete-emotions and Dimensional Accounts. PhD thesis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences (2004)

    Google Scholar 

  15. Sun, X.: Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In: Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida (2002)

    Google Scholar 

  16. Fernandez, R.: A Computational Model for the Automatic Recognition of Affect in Speech. PhD thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  17. Kazemzadeh, A., Lee, S., Narayanan, S.: Acoustic correlates of user response to errors in human-computer dialogues. In: Proc. IEEE ASRU, St. Thomas, U.S. Virgin Islands (December 2003)

    Google Scholar 

  18. Bachorowski, J.-A., Owren, M.J.: Vocal expression of emotion: acoustic properties of speech are associated with emotional intensity and context. Psychological Science 6(4), 219–224 (1995)

    Article  Google Scholar 

  19. Rothkrantz, L.J.M., Wiggers, P., van Wees, J.W.A., van Vark, R.J.: Voice stress analysis. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 449–456. Springer, Heidelberg (2004)

    Google Scholar 

  20. Martin, K.: An exact probability metric for decision tree splitting and stopping. Mach. Learn. 28(2-3), 257–291 (1997)

    Article  Google Scholar 

  21. Mingers, J.: A comparison of methods of pruning induced rule trees, Technical Report, Coventry, England: University of Warwick, School of Industrial and Business Studies (1988)

    Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (2003)

    Google Scholar 

  23. Quinlan, R.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  24. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Recognition Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  25. Ting, K.M.: Common issues in Instance-Based and Naive-Bayesian classifiers. PhD thesis, Baser Department of Computer Science, The University of Sidney, Australia (1995)

    Google Scholar 

  26. Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++: A machine learning library in C++. In: Tools with Artificial Intelligence, pp. 234–245. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  27. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  28. Wettschereck, D.: A study of distance-based machine learning algorithms. PhD thesis, Adviser-Thomas G. Dietterich (1994)

    Google Scholar 

  29. Minsky, M.: Steps towards artificial intelligence. In: Feigenbaum, E.A., Feldman, J. (eds.) Computers and Thought, pp. 406–450. McGraw-Hill, New York (1963)

    Google Scholar 

  30. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  31. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  32. Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by bayesian network-based optimization. Artificial Intelligence 123(1-2), 157–184 (2000)

    Article  MATH  Google Scholar 

  33. Stone, M.: Cross-validatory choice and assessment of statistical procedures. Journal of the Royal Statistical Society 36, 111–157 (1974)

    MATH  Google Scholar 

  34. Gunes, V., Menard, M., Loonis, P., Petit-Renaud, S.: Combination, cooperation and selection of classifiers: A state of the art. International Journal of Pattern Recognition 17, 1303–1324 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Chetouani Amir Hussain Bruno Gas Maurice Milgram Jean-Luc Zarader

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Álvarez, A. et al. (2007). Application of Feature Subset Selection Based on Evolutionary Algorithms for Automatic Emotion Recognition in Speech. In: Chetouani, M., Hussain, A., Gas, B., Milgram, M., Zarader, JL. (eds) Advances in Nonlinear Speech Processing. NOLISP 2007. Lecture Notes in Computer Science(), vol 4885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77347-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77347-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77346-7

  • Online ISBN: 978-3-540-77347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics