[go: up one dir, main page]

Skip to main content

Anticipation and Future-Oriented Capabilities in Natural and Artificial Cognition

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

Empirical evidence indicates that anticipatory representations grounded in the sensorimotor neural apparatus are crucially involved in several low and high level cognitive functions, including attention, motor control, planning, and goal-oriented behavior. A unitary theoretical framework is emerging that emphasizes how simulative capabilities enable social abilities, too, including joint attention, imitation, perspective taking and communication. We argue that anticipation will be a key element for bootstrapping high level cognitive functions in cognitive robotics, too. We thus propose the challenge of understanding how anticipatory representations, that serve for coordinating with the future and not only with the present, develop in situated agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, J.A.: A closed-loop theory of motor learning. Journal of Motor Behavior 3, 111–149 (1971)

    Google Scholar 

  2. Balkenius, C., Hulth, N.: Attention as selection-for-action: a scheme for active perception. In: Proceedinsg of EuRobot-1999, Zurich (1999)

    Google Scholar 

  3. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–600 (1999)

    Article  Google Scholar 

  4. Bickhard, M.H., Terveen, L.: Foundational Issues in Artificial Intelligence and Cognitive Science: Impasse and Solution. Elsevier Scientific, Amsterdam (1995)

    Google Scholar 

  5. Blakemore, S.-J., Decety, J.: From the perception of action to the understanding of intention. Nature Reviews Neuroscience 2, 561–567 (2001)

    Google Scholar 

  6. Blakemore, S.-J., Frith, C.D., Wolpert, D.M.: The cerebellum is involved in predicting the sensory consequences of action. Brain Imaging 12, 1879–1884 (2001)

    Google Scholar 

  7. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  8. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(47), 139–159 (1991)

    Article  Google Scholar 

  9. Butz, M.V., Sigaud, O., Gérard, P.: Internal models and anticipations in adaptive learning systems. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems: Foundations, Theories, and Systems, pp. 86–109. Springer, Heidelberg (2003)

    Google Scholar 

  10. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In: Wooldridge, M.J., Jennings, N.R. (eds.) Intelligent Agents. LNCS, vol. 890, pp. 56–70. Springer, Heidelberg (1995)

    Google Scholar 

  11. Castelfranchi, C.: Mind as an anticipatory device: For a theory of expectations. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 258–276. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Chiel, H.J., Beer, R.D.: The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences 20, 553–557 (1997)

    Article  Google Scholar 

  13. Clark, A.: Being There. Putting Brain, Body, and World Together. MIT Press, Cambridge (1997)

    Google Scholar 

  14. Clark, A., Grush, R.: Towards a cognitive robotics. Adaptive Behavior 7(1), 5–16 (1999)

    Article  Google Scholar 

  15. Colombo, M., Graziano, M.: Effects of auditory and visual interference on auditory-visual delayed matching to sample in monkeys (maca fascicularis). Behav. Neurosci. 108, 636–639 (1994)

    Article  Google Scholar 

  16. Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)

    Google Scholar 

  17. Damasio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. Grosset/Putnam, New York (1994)

    Google Scholar 

  18. Decety, J.: Do imagined and executed actions share the same neural substrate? Brain Res. Cogn. 3, 87–93 (1996)

    Article  Google Scholar 

  19. Decety, J., Chaminade, T.: When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition 12(20), 577–596 (2003)

    Article  Google Scholar 

  20. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal 54, 361–369 (2005)

    Article  Google Scholar 

  21. Desmurget, M., Grafton, S.: Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000)

    Article  Google Scholar 

  22. Doya, K.: Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10(6), 732–739 (2000)

    Article  Google Scholar 

  23. Doya, K.: Metalearning and neuromodulation. Neural Netw. 15(4-6), 495–506 (2002)

    Article  Google Scholar 

  24. Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press, Cambridge, MA (1991)

    MATH  Google Scholar 

  25. Fleischer, J.G.: Neural correlates of anticipation in cerebellum, basal ganglia, and hippocampus. In: Butz, M., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) Anticipatory Behavior in Adaptive Learning Systems: Advances in Anticipatory Processing. LNCS (LNAI), vol. 4520, Springer, Heidelberg (2007)

    Google Scholar 

  26. Frith, C.D., Blakemore, S.J., Wolpert, D.M.: Abnormalities in the awareness and control of action. Philos. Trans. R Soc. Lond. B Biol. Sci. 355(1404), 1771–1788 (2000)

    Article  Google Scholar 

  27. Gallese, V.: The inner sense of action: agency and motor representations. Journal of Consciousness Studies 7, 23–40 (2000)

    Google Scholar 

  28. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12), 493–501 (1998)

    Article  Google Scholar 

  29. Gallese, V., Metzinger, T.: Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology 13(3), 365–388 (2003)

    Article  Google Scholar 

  30. Gardenfors, P., Orvath, M.: The evolution of anticipatory cognition as a precursor to symbolic communication. In: Brook, S. (ed.) Proceedings of the Morris Symposium on the Evolution of Language, NY, USA (2005)

    Google Scholar 

  31. Gibson, J.: The ecological approach to visual perception. Lawrence Erlbaum Associates, Inc., Mahwah, NJ (1979)

    Google Scholar 

  32. Gloye, A., Goektekin, C., Egorova, A., Tenchio, O., Rojas, R.: Fu-fighters small size 2004. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg (2005)

    Google Scholar 

  33. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–396 (2004)

    Article  Google Scholar 

  34. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42, 335–346 (1990)

    Article  Google Scholar 

  35. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6, 242–247 (2002)

    Article  Google Scholar 

  36. Hoffmann, H., Moller, R.: Action selection and mental transformation based on a chain of forward models. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.-A. (eds.) From Animals to Animats 8, Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior, Los Angeles, CA, pp. 213–222. MIT Press, Cambridge (2004)

    Google Scholar 

  37. Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 44–65. Springer, Heidelberg (2003)

    Google Scholar 

  38. Iacoboni, M.: Understanding others: Imitation, language, empathy. In: Hurley, S., Chater, N. (eds.) Perspectives on Imitation: From Cognitive Neuroscience to Social Science, MIT Press, Cambridge, MA (2003)

    Google Scholar 

  39. James, W.: The Principles of Psychology. Dover Publications, New York (1890)

    Google Scholar 

  40. Jeannerod, M.: Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)

    Article  Google Scholar 

  41. Jordan, M.I., Rumelhart: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

  42. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)

    Article  Google Scholar 

  43. Keijzer, F.: Representation and behavior. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  44. Kunde, W., Koch, I., Hoffmann, J.: Anticipated action effects affect the selection, initiation and execution of actions. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology 57(1), 87–106 (2004)

    Article  Google Scholar 

  45. Littman, M., Sutton, R., Singh, S.: Predictive representations of state. In: Proc. NIPS 2002, Vancouver (2001)

    Google Scholar 

  46. Mehta, B., Schaal, S.: Forward models in visuomotor control. Journal of Neurophysiology 88, 942–953 (2002)

    Google Scholar 

  47. Mel, B.W.: Vision-based robot motion planning. Neural networks for control, 229–253 (1990)

    Google Scholar 

  48. Miall, R.C.: Connecting mirror neurons and forward models. Neuroreport 14(17), 2135–2137 (2003)

    Article  Google Scholar 

  49. Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural Networks 9(8), 1265–1279 (1996)

    Article  MATH  Google Scholar 

  50. Middleton, F.A., Strick, P.L.: Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 42(2), 183–200 (2000)

    Article  Google Scholar 

  51. Nolfi, S.: Behaviour as a complex adaptive system: On the role of self-organization in the development of individual and collective behaviour. ComplexUs 2, 195–203 (2005)

    Article  Google Scholar 

  52. O’Regan, J., Noe, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5), 883–917 (2001)

    Google Scholar 

  53. Pezzulo, G., Baldassarre, G., Butz, M.V., Castelfranchi, C., Hoffmann, J.: An analysis of the ideomotor principle and tote. In: Butz, M., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) Proceedings of the Third Workshop on Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2006). LNCS, vol. 4520, pp. 73–93. Springer, Heidelberg (2006)

    Google Scholar 

  54. Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  55. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Processing 8(2), 115–131 (2007)

    Article  Google Scholar 

  56. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  57. Piaget, J.: The Construction of Reality in the Child. Ballentine (1954)

    Google Scholar 

  58. Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79–87 (1999)

    Article  Google Scholar 

  59. Redgrave, P., Gurney, K.: The short-latency dopamine signal: a role in discovering novel actions? Nature Reviews Neuroscience 7, 967–975 (2006)

    Article  Google Scholar 

  60. Redgrave, P., Prescott, T.J., Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999)

    Article  Google Scholar 

  61. Rizzolatti, G., Arbib, M.A.: Language within our grasp. Trends in Neurosciences 21(5), 188–194 (1998)

    Article  Google Scholar 

  62. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3 (1996)

    Google Scholar 

  63. Roitblat, H.: Codes and coding processes in pigeon short-term memory. Anim. Learn Behav. 8, 341–351 (1980)

    Google Scholar 

  64. Rosen, R.: Anticipatory Systems. Pergamon Press, Oxford (1985)

    Google Scholar 

  65. Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philosophy of Science 10(1), 18–24 (1943)

    Article  Google Scholar 

  66. Roy, D.: Semiotic schemas: a framework for grounding language in action and perception. Artificial Intelligence 167(1-2), 170–205 (2005)

    Article  Google Scholar 

  67. Roy, D., yuh Hsiao, K., Mavridis, N., Gorniak, P.: Ripley, hand me the cup: Sensorimotor representations for grounding word meaning. In: Int. Conf. of Automatic Speech Recognition and Understanding (2006)

    Google Scholar 

  68. Schomaker, L.: Anticipation in cybernetic systems: A case against mindless anti-representationalism. In: IEEE lntemational Conference on Systems, Man and Cybernetics (2004)

    Google Scholar 

  69. Schubotz, R.I.: Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences 11(5), 211–218 (2007)

    Article  Google Scholar 

  70. Schultz, W., Dayan, P., Montague, P.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  71. Shanahan, M.: Cognition, action selection, and inner rehearsal. In: Proceedings IJCAI 2005 Workshop on Modelling Natural Action Selection, pp. 92–99 (2005)

    Google Scholar 

  72. Singh, S., Barto, A.G., Chentanez, N.: Intrinsically motivated reinforcement learning. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1281–1288. MIT Press, Cambridge, MA (2005)

    Google Scholar 

  73. Steels, L.: Intelligence - dynamics and representations. In: Steels, L. (ed.) The Biology and Technology of Intelligent Autonomous Agents, Springer, Berlin (1995)

    Google Scholar 

  74. Stephan, V., Gross, H.-M.: Visuomotor anticipation - a powerful approach to behavior-driven perception. Künstliche Intelligenz 17(2), 12–17 (2003)

    Google Scholar 

  75. Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw. 16(1), 11–23 (2003)

    Article  Google Scholar 

  76. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Netw. 12(7-8), 1131–1141 (1999)

    Article  Google Scholar 

  77. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Perception and Action. MIT Press, Cambridge (1994)

    Google Scholar 

  78. Tolman, E.: Purposive Behavior in Animals and Men. Appleton-Century-Crofts, New York (1932)

    Google Scholar 

  79. von Holst, E., Mittelstaedt, H.: Das reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950)

    Article  Google Scholar 

  80. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos Trans. R Soc. Lond B Biol. Sci. 358(1431), 593–602 (2003)

    Article  Google Scholar 

  81. Wolpert, D.M., Gharamani, Z., Jordan, M.: An internal model for sensorimotor integration. Science 269, 1179–1182 (1995)

    Article  Google Scholar 

  82. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  83. Ziemke, T., Jirenhed, D.-A., Hesslow, G.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pezzulo, G. (2007). Anticipation and Future-Oriented Capabilities in Natural and Artificial Cognition. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics