Abstract
While existing video object tracking is sensitive to the accuracy of object segmentation, we propose a central point based algorithm in this paper to allow inaccurately segmented objects to be tracked inside video sequences. Since object segmentation remains to be a challenge without any robust solution to date, we apply a region-grow technique to further divide the initially segmented object into regions, and then extract a central point within each region. A macro-block is formulated via the extracted central point, and the object tracking is carried out through such centralized macroblocks and their directional vectors. As the size of the macroblock is often much smaller than the segmented object region, the proposed algorithm is tolerant to the inaccuracy of object segmentation. Experiments carried out show that the proposed algorithm works well in tracking video objects measured by both efficiency and effectiveness.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koller, D., Danilidis, K., Nagel, H.: Model-based object tracking in monocular image sequences of road traffic scenes. Int. J. Comput. Vis. 10(3), 257–281 (1993)
Meier, T., Ngan, K.: Automatic segmentation of moving objects for video object plane generation. IEEE Trans. Circuits Syst. Video Technol. 8(5), 525–538 (1998)
Wang, D.: Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Trans. Circuits Syst. Video Technol. 8(5), 539–546 (1998)
Marcotegui, B., Zanoguera, F., Correia, P., Rosa, R., Marques, F., Mech, R., Wollborn, M.: A video object generation tool allowing friendly user interaction. In: Proc. IEEE Int. Conf. Image Process. pp. 391–395 (1999)
Tao, H., Sawhney, H.S., Kumar, R.: Object tracking with Bayesian estimation of dynamic layer representation. IEEE Trans. Pattern Anal. Machine Intell. 24(1), 75–89 (2002)
Gu, C., Lee, M.-C.: Semiautomatic segmentation and tracking of semantic video objects. IEEE Trans. Circuits Syst. Video Technol. 8(5), 572–584 (1998)
Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and tracking. In: ICCV. Proc. 7th Int. Conf. Computer Vision, pp. 224–240 (1999)
Peterfreund, N.: Robust tracking of position and velocity with Kalmansnakes. IEEE Trans. Pattern Anal. Machine Intell. 21(6), 564–569 (1998)
Sun, S., Haynor, D.R., Kim, Y.: Semiautomatic video object segmentation using VSnakes. IEEE Trans. Circuits Syst. Video Technol. 13(1), 75–82 (2003)
Gnsel, B., Tekalp, A.M., van Beek, P.J.: Content-based access to video objects: temporal segmentation, visual summarization, and feature extraction. Signal Process 66(2), 261–280 (1998)
Zhao, J.W., Wang, P., Liu, C.Q.: An object tracking algorithm based on occlusion mesh model. In: Proc. Int. Conf. Machine Learning and Cybernetics, pp. 288–292 (2002)
Beymer, D., McLauchlan, P., Coifman, B., Malik, J.: A real-time computer vision system for measuring traf?c parameters. In: CVPR. Proc. ComputerVision and Pattern Recognition, pp. 495–501 (1997)
Kim, C., Hwang, J.N.: Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications. IEEE Transactions on Circuits and Systems for Video Technology 12(2) (2002)
Gao, L., Jiang, J., Yang, S.Y.: Constrained region-grow for semantic object segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 323–331. Springer, Heidelberg (2006)
Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Machine Intell. 16(6), 641–647 (1994)
Kirishima, T., Sato, K., Chihara, K.: Real-time gesture recognition by learning and selective control of visual interest points. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3) (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, B., Jiang, J., Xiao, G. (2007). Video Object Tracking Via Central Macro-blocks and Directional Vectors. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-74260-9_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74258-6
Online ISBN: 978-3-540-74260-9
eBook Packages: Computer ScienceComputer Science (R0)