[go: up one dir, main page]

Skip to main content

Accelerating the Singular Value Decomposition of Rectangular Matrices with the CSX600 and the Integrable SVD

  • Conference paper
Parallel Computing Technologies (PaCT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4671))

Included in the following conference series:

  • 735 Accesses

Abstract

We propose an approach to speed up the singular value decomposition (SVD) of very large rectangular matrices using the CSX600 floating point coprocessor. The CSX600-based acceleration board we use offers 50GFLOPS of sustained performance, which is many times greater than that provided by standard microprocessors. However, this performance can be achieved only when a vendor-supplied matrix-matrix multiplication routine is used and the matrix size is sufficiently large. In this paper, we optimize two of the major components of rectangular SVD, namely, QR decomposition of the input matrix and back-transformation of the left singular vectors by matrix Q, so that large-size matrix multiplications can be used efficiently. In addition, we use the Integrable SVD algorithm to compute the SVD of an intermediate bidiagonal matrix. This helps to further speed up the computation and reduce the memory requirements. As a result, we achieved up to 3.5 times speedup over the Intel Math Kernel Library running on an 3.2GHz Xeon processor when computing the SVD of a 100,000 × 4000 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK User’s Guide. SIAM, Philadelphia (1992)

    Google Scholar 

  2. ClearSpeed Technology Inc., http://www.clearspeed.com/

  3. Elmroth, E., Gustavson, F.: Applying Recursion to Serial and Parallel QR Factorization Leads to Better Performance. IBM Journal of Research and Development 44, 605 (2000)

    Article  Google Scholar 

  4. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  5. GRAPE-DR Project, http://grape-dr.adm.s.u-tokyo.ac.jp/

  6. Iwasaki, M., Nakamura, Y.: Accurate Computation of Singular Values in terms of Shifted Integrable Schemes. Japan J. Indust. Appl. Math. 1, 239–259 (2006)

    MathSciNet  Google Scholar 

  7. Parlett, B.N., Dhillon, I.: Fernando’s Solution to Wilkinson’s problem: An Application of Double Factorization. Linear Algebra Appl. 267, 247–279 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Schreiber, R., Van Loan, C.F.: A Storage-Efficient WY Representation for Products of Householder Transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)

    Article  MATH  Google Scholar 

  9. Takata, M., Kimura, K., Iwasaki, M., Nakamura, Y.: Performance of a New Singular Value Decomposition Scheme for Large Scale Matrices. In: Proceedings of The IASTED International Conference on Parallel and Distributed Computing and Networks, pp. 304–309 (2006)

    Google Scholar 

  10. Toledo, S., Rabani, E.: Very Large Electronic Structure Calculations using an Out-of-Core Filter-Diagonalization Method. J. Comput. Phys. 180, 256–269 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor Malyshkin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, Y. et al. (2007). Accelerating the Singular Value Decomposition of Rectangular Matrices with the CSX600 and the Integrable SVD. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2007. Lecture Notes in Computer Science, vol 4671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73940-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73940-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73939-5

  • Online ISBN: 978-3-540-73940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics