[go: up one dir, main page]

Skip to main content

Maximum Likelihood Estimators in Magnetic Resonance Imaging

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

  • 2284 Accesses

Abstract

Images of the MRI signal intensity are normally constructed by taking the magnitude of the complex-valued data. This results in a biased estimate of the true signal intensity. We consider this as a problem of parameter estimation with a nuisance parameter. Using several standard techniques for this type of problem, we derive a variety of estimators for the MRI signal, some previously published and some novel. Using Monte Carlo experiments we compare the estimators we derive with others previously published. Our results suggest that one of the novel estimators we derive may strike a desirable trade-off between bias and mean squared error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995)

    Article  Google Scholar 

  2. Macovski, A.: Noise in MRI. Magn. Reson. Med. 36, 494–497 (1996)

    Article  Google Scholar 

  3. Henkelman, R.M.: Measurement of signal intensities in the presence of noise in MR images. Med. Phys. 12(2), 232–233 (1985)

    Article  Google Scholar 

  4. McGibney, G., Smith, M.R.: An unbiased signal-to-noise ratio measure for magnetic resonance images. Med. Phys. 20(4), 1077–1078 (1993)

    Article  Google Scholar 

  5. Miller, A.J., Joseph, P.M.: The use of power images to perform quantitative analysis on low SNR MR images. Magn. Reson. Imaging 11, 1051–1056 (1993)

    Article  Google Scholar 

  6. Sijbers, J., den Dekker, A.J., Scheunders, P., Dyck, D.V.: Maximum-likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imag. 17(3), 357–361 (1998)

    Article  Google Scholar 

  7. Sijbers, J., den Dekker, A.J.: Maximum likelihood estimation of signal amplitude and noise variance from mr data. Magn. Reson. Med. 51, 586–594 (2004)

    Article  Google Scholar 

  8. Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179, 317–322 (2006)

    Article  Google Scholar 

  9. Ahn, C.B., Cho, Z.H.: A new phase correction method in NMR imaging based on autocorrelation and histogram analysis. IEEE Transactions on Medical Imaging 6(1), 32–36 (1987)

    Article  Google Scholar 

  10. Bernstein, M.A., Perman, W.H.: Least-squares algorithm for phasing MR images. In: Book of Abstracts vol. 2, p. 801. In: Sixth Annual Meeting of SMRM, Society of Magnetic Resonance in Medicine August 1987 (1987)

    Google Scholar 

  11. Noll, D., Nishimura, D., Macovski, A.: Homodyne detection in magnetic resonance imaging. IEEE Trans. Med. Imag. 10, 154–163 (1991)

    Article  Google Scholar 

  12. Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Processing 8(10), 1408–1418 (1999)

    Article  Google Scholar 

  13. Alexander, M.E., Baumgartner, R., Summers, A.R., Windischberger, C., Klarhoefer, M., Moser, E., Somorjai, R.L.: A wavelet-based method for improving signal-to-noise ratio and contrast in MR images. Magn. Reson. Imaging 18, 169–180 (2000)

    Article  Google Scholar 

  14. Bao, P., Zhang, L.: Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans. Med. Imag. 22(9), 1089–1099 (2003)

    Article  Google Scholar 

  15. Tisdall, M.D., Atkins, M.S.: MRI denoising via phase error estimation. In: Proc. SPIE. vol. 5747, pp. 646–654 (2005)

    Google Scholar 

  16. Chang, Z., Xiang, Q.S.: Nonlinear phase correction with an extended statistical algorithm. IEEE Trans. Med. Imag. 24(6), 791–798 (2005)

    Article  Google Scholar 

  17. Bartlett, M.S.: Approximate confidence intervals: III a bias correction. Biometrika 42(1/2), 201–204 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kalbfleisch, J.D., Sprott, D.A.: Application of likelihood methods to models involving large numbers of parameters. Journal of the Royal Statistical Society B 32(2), 175–208 (1970)

    MATH  MathSciNet  Google Scholar 

  19. Levin, B., Kong, F.: Bartlett’s bias correction to the profile score function is a saddlepoint correction. Biometrika 77(1), 219–221 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liang, K.Y., Zeger, S.L.: Inference based on estimating functions in the presence of nuisance parameters. Statistical Science 10(2), 158–173 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Jeffreys, H.: Theory of Probability, 3rd edn. Claredon Press (1961)

    Google Scholar 

  22. Bernstein, M.A., Thomasson, D.M., Perman, W.: Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. Med. Phys. 16, pp. 813–817 (1989)

    Google Scholar 

  23. Tisdall, M.D., Atkins, M.S.: Perception of dim targets on dark backgrounds in MRI. In: SPIE Medical Imaging 2007, Proceedings of 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tisdall, M.D., Atkins, M.S., Lockhart, R.A. (2007). Maximum Likelihood Estimators in Magnetic Resonance Imaging. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics