[go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Numerous methods for capturing geospatial data exist. This chapter focuses on those most commonly applied for geographic information systems, namely photogrammetry and remote sensing. In addition, important new trends such as geosensor networks and indoor mapping are addressed. Section 9.1 discusses passive sensors. Firstly, digital photogrammetric mapping cameras are explained followed by an overview of multispectral sensing techniques as well as thermal imaging. Section 9.2 treats active sensors and explains imaging by RADAR and airborne LIDAR.

An introduction to modern navigation methods is provided in Sect. 9.3, Global Navigation Satellite Systems (GNSS) measuring 3-D position and inertial navigation systems measuring the attitude. Sensor orientation describing the geometric relation between the output of a sensor (an image) and the object space (the Earth) is dealt with in Sect. 9.4. Geometric models as well as the methods for finding the appropriate parameters are also described. As a basis for automatic processes, an introduction to feature matching is included. Section 9.5 discusses two important results of photogrammetry and remote sensing for geographic information systems: digital surface models and orthophotos. The chapter concludes with geosensor networks (Sect. 9.6), indoor mapping and paper maps. The discussion of paper maps, their transformation to a digital representation, and the related accuracy issues is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AAT:

Automated aerial triangulation

ALS:

airborne laser scanning

AT:

aerial triangulation

BLUE:

Best Linear Unbiased Estimation

C/A:

coarse-acquisition

CCD:

Charge Coupled Device

CPU:

central processing unit

CRS:

coordinate reference system

CW:

Continuous wave

DBS:

distributed spatial database system

DEM:

digital elevation model

DGPS:

Differential Global Positioning System

DIN:

Deutsches Institut für Normung e.V., German Institute for Standardization

DSM:

digital surface model

DTG:

dynamically tuned gyros

DTM:

digital terrain model

DoG:

difference of Gaussians

ECEF:

Earth-centered Earth-fixed

EGNOS:

European Geostationary Navigation Overlay Service

EKF:

extended Kalman filter

EM:

Electromagnetic

EM:

expectation maximization

EO:

exterior orientation

FOG:

fiber optical gyros

FOV:

field of view

GAGAN:

GPS Aided Geo Augmented Navigation

GCP:

ground control point

GDF:

Geographic Data Files

GIS:

Geographic Information System

GLAS:

geoscience laser altimeter

GLONASS:

Globalnaya Navigatsionnaya Sputnikovaya Sistema

GNSS:

Global Navigation Satellite System

GPS:

Global Positioning System

GSD:

Ground sample distance

GSN:

geosensor networks

ID:

identifier

IFOV:

instantaneous field of view

IIF:

Image Interchange Format

IMU:

inertial measurement unit

INS:

Integrated Navigation System

IO:

interior orientation

IR:

Implementing Rules

ISEO:

integrated sensor orientation

ISO:

International Organization for Standardization

ISPRS:

International Society for Photogrammetry and Remote Sensing

InSAR:

Interferometric SAR

LIDAR:

light detection and ranging, Laser Scanning

LMM:

linear mixing model

LSR:

Local space rectangular

MEMS:

microelectromechanical system

MIT:

Massachusetts Institute of Technology

MS:

multispectral

MSS:

Multi-Spectral Scanner

MTSAT:

Meteorological Satellite

NCC:

normalized cross-correlation

PAI:

Positional Accuracy Improvement

PCA:

Principle Component Analysis

PD:

principal distance

PP:

principal point

PPP:

Precise Point Positioning

PRF:

Pulse repetition frequency

RADAR:

Radio Detection and Ranging

RAM:

random-access memory

RANSAC:

random sample consensus

RAR:

real aperture RADAR

RFID:

Radio Frequency Identification

RGB:

red, green, blue

RLG:

ring laser gyros

RTK:

Real Time Kinematic

SAR:

synthetic aperture Radar

SBAS:

satellite-based augmentation system

SIFT:

scale invariant feature transform

SLA:

shuttle laser altimeter

SLAM:

simultaneous localization and mapping

SLR:

Satellite laser ranging

SLR:

Side Looking RADAR

SNR:

Signal-to-Noise Ratio

SPP:

Single Point Positioning

SPS:

Sensor Planning Service

SQL:

Structured Query Language

SRTM:

Shuttle RADAR Topography Mission

SW:

swath width

TIN:

Triangulated Irregular Network

TLS:

terrestrial laser scanning

VNIR:

Visible/near infrared

WAAS:

Wide Area Augmentation System

WGS84:

World Geodetic System 1984

ifp:

Institute for Photogrammetry

l-ENU:

east–north–up

l-NED:

north–east–down

References

  1. P. Wolf: Elements of Photogrammetry (McGraw-Hill, New York 1974)

    Google Scholar 

  2. K. Kraus: Photogrammetry – Geometry from Images and Laser Scans (de Gruyter, Berlin 2007)

    Book  Google Scholar 

  3. C. Slama: Manual of Photogrammetry, 4th edn. (American Society of Photogrammetry, Bethesda 1980)

    Google Scholar 

  4. T. Luhmann: Nahbereichsphotogrammetrie (Wichmann, Heidelberg 2000)

    Google Scholar 

  5. H.-K. Meier: Über die geometrische Genauigkeit von Luftbildkammern, Proc. 35th Photogramm. Week, Schriftenr. Inst. Photogramm. 2, 89–103 (1976)

    Google Scholar 

  6. D.C. Brown: The bundle adjustment – progress and prospects, Int. Arch. Photogramm. 21(3), 33 (1976)

    Google Scholar 

  7. H. Ebner: Self calibrating block adjustment, XIIIth Congress of the International Society for Photogrammetry, Commission III, Helsinki (Helsinki 1976)

    Google Scholar 

  8. A. Grün: Accuracy, reliability and statistics in close-range photogrammetry, Inter-congress symposium, International Society for Photogrammetry, Com. V, Stockholm, Sweden (Stockholm 1978)

    Google Scholar 

  9. G. Petri: Deja Vu – The configurations of the new airborne digital imagers are all rooted in the distant past!, GeoInformatics 3(5), 48–51 (2000)

    Google Scholar 

  10. C. Dörstel, K. Jacobsen, D. Stallmann: DMC – Photogrammetric accuracy – calibration aspects and generation of synthetic DMC images, Proc on Optical 3-D Measurement Techniques VI, Zürich (Zürich 2002) pp. 74–82

    Google Scholar 

  11. R. Ladstädter, H. Tschemmernegg, M. Gruber: Calibrating the Ultracam aerial camera systems, an update, Proc. International Calibration and Orientation Workshop EuroCOW 2010 (Castelldefels, Spain 2010), , on CD, 8 pages

    Google Scholar 

  12. R.C. Gonzalez, R.E. Woods: Digital Image Processing (Addison-Wesley, Reading 1992)

    Google Scholar 

  13. S. Becker, N. Haala, E. Honkavaara, L. Markelin: Image restoration for resolution improvement of digital aerial images: A comparison of large format cameras, Proc ISPRS Commission I symposium 2006, Vol. XXXVI (Part I IAPRS, Marne le Valle 2006)

    Google Scholar 

  14. M. Ehlers, S. Klonus, P.J. Åstrand, P. Rosso: Multi-sensor image fusion for pansharpening in remote sensing, Int. J. Imag. Data Fusion 1(1), 25–45 (2010)

    Article  Google Scholar 

  15. G. Petri, S. Walker: Airborne digital imaging technology: A new overview, Photogramm. Rec. 22(119), 203–225 (2007), digital available at http://web2.ges.gla.ac.uk/∼gpetrie/Petrie_Walker_j.1477-9730.2007.00446.pdf (last access Oct 12, 2010).

    Article  Google Scholar 

  16. O. Hofmann, P. Navé, H. Ebner: DPS – A Digital Photogrammetric System for producing digital elevation models and orthophotos by means of linear array scanner imagery, P.E.R.S. 50(8), 1135–1142 (1984)

    Google Scholar 

  17. E.E. Derenyi: An exploratory investigation concerning relative orientation of continuous strip imagery. Ph.D. Thesis (Dept. of Surveying Engineering, University of New Brunswick 1970) p. 144

    Google Scholar 

  18. DIN 18716-3:1997-07: Photogrammetrie und Fernerkundung – Teil 3: Begriffe der Fernerkundung (DIN, Berlin 1997)

    Google Scholar 

  19. N.M. Short Sr. (Ed.): The Remote Sensing Tutorial, Landsat Program Science Office (Nasa, Washington 2011), available at http://rst.gsfc.nasa.gov/Intro/Part2_16.html

    Google Scholar 

  20. DIN 5031:1984, Teil 7: Strahlungsphysik im optischen Bereich und Lichttechnik – Benennung der Wellenlängenbereiche (DIN, Berlin 1984)

    Google Scholar 

  21. N.M. Short Sr.: Landsatʼs Multi-Spectral Scanner (NASA, Greenbelt 2011 2010), available from http://rst.gsfc.nasa.gov (last access July 20)

    Google Scholar 

  22. J. Albertz, M. Wiggenhagen: Taschenbuch zur Photogrammetrie und Fernerkundung, Guide for Photogrammetry and Remote Sensing (Wichmann, Berlin 2009)

    Google Scholar 

  23. J.H. Bowles, D.B. Gillis: An optical real-time adaptive spectral identification system (ORASIS). In: Hyperspectral Data Exploitation, Theory and Applications, ed. by C.-I. Chang (Wiley, New York 2009) pp. 78–79

    Google Scholar 

  24. ISO/TS 19130:2010: Geographic information – Imagery sensor models for geopositioning (ISO, Geneva 2010)

    Google Scholar 

  25. J.A. Richards: Remote Sensing with Imaging RADAR (Springer, Berlin Heidelberg 2009)

    Book  Google Scholar 

  26. J.P. Fitch: Synthetic Aperture RADAR (Springer, Berlin Heidelberg 1988)

    Book  Google Scholar 

  27. J.-S. Lee, J.-H. Wen, T.L. Ainsworth, K.-S. Chen, A.J. Chen: Improved sigma filter for speckle filtering of SAR imagery, IEEE Trans. Geosci. Remote Sens. 47(2), 202–213 (2009)

    Google Scholar 

  28. U. Sörgel (Ed.): RADAR Remote Sensing of Urban Areas (Springer, Berlin Heidelberg 2009)

    Google Scholar 

  29. A. Moreira: RADAR mit synthetischer Apertur – Grundlagen und Signalverarbeitung. Ph.D. Thesis (TH), Karlsruhe 2000)

    Google Scholar 

  30. W. Keydel: Normal and Differential SAR Interferometry: RTO-EN-SET-081 (Microwaves and RADAR Institute DLR, Oberpfaffenhofen 2004)

    Google Scholar 

  31. A. Wehr, U. Lohr: Airborne laser scanning – An introduction and overview, ISPRS J. Photogram. Remote Sens. 54(2/3), 6882 (1999)

    Google Scholar 

  32. P. Schaer: In-flight Quality Assessment and Data Processing for Airborne Laser Scanning. Ph.D. Thesis (Swiss Federal Institute of Technology, Lausanne 2009)

    Google Scholar 

  33. C. Hug: The scanning laser altitude and reflectance sensor – An instrument for efficient 3D terrain survey, Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 30, 100–107 (1994)

    Google Scholar 

  34. U. Lohr, A. Beraldin, F. Blais: Laser scanning technology. In: Airborne and Terrestrial Laser Scanning, ed. by G. Vosselman, H.-G. Maas (Whittles, Dunbeath 2010)

    Google Scholar 

  35. C. Carabajal, D. Harding, S.B. Luthcke, W. Fong, S. Rowton, J. Frawley: Processing of shuttle laser altimeter range and return pulse energy data in support of LSA-02, Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 32(4A), 269–277 (1999)

    Google Scholar 

  36. K. Morin: Calibration of airborne laser scanners, UCGE Report No. 20179 (Univ. of Calgary, Calgary 2002)

    Google Scholar 

  37. V. Spikes, B. Csatho, I. Whillans: Airborne laser profiling of antartic ice stream for change detection, Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 32(3-W14), 7 (1999)

    Google Scholar 

  38. A. Geiger, H.G. Kahle, P. Limpach: Airborne laser profiling, ETH Res. Database 6120 (Swiss Federal Institute of Technology, ETH Zurich 2009)

    Google Scholar 

  39. S. Revnivykh: GLONASS status and progress, Proc. ION GNSS 2008, Savannah (2008)

    Google Scholar 

  40. T. Stansell, R. Fontana, W. Cheung: The modernized I2 civil signal, GPS World, September (2001)

    Google Scholar 

  41. A. Leick: GPS Satellite Surveying, Science/Geography, 3rd edn. (Wiley, New York 2004)

    Google Scholar 

  42. G. Hein, J. Rodriguez, S. Wallner, B. Eissfeller, T. Pany, P. Hartl: Envisioning a future: GNSS system of systems, Inside GNSS January/February, 58–66 (2007)

    Google Scholar 

  43. C. Satirapod, P. Homniam: GPS precise point positioning software for ground control point establishment in remote sensing applications, J. Surv. Eng. (ASCE) 132(1), 11–14 (2006)

    Google Scholar 

  44. D. Titterton, J. Weston: Strapdown Inertial Navigation Technology (IEE, Stevenage 1997)

    Google Scholar 

  45. C. Jekeli: Inertial Navigation Systems with Geodetic Applications (de Gruyter, Berlin 2001)

    Google Scholar 

  46. R. Andersson, H.R. Bilger, G.E. Stedman: Sagnac effect: A century of Earth-rotated interferometers, Am. J. Phys. 62, 975–985 (1994)

    Google Scholar 

  47. R. Greenspan: Inertial navigation technology from 1970 to 1995, J. Inst. Navig. 42, 165–186 (1995)

    Google Scholar 

  48. K. Legat: Approximate direct georeferencing in national coordinates, ISPRS J. Photogram. Remote Sens. 60, 239–255 (2006)

    Article  Google Scholar 

  49. J. Skaloud, K. Legat: Theory and reality of direct georeferencing in national coordinates, ISPRS J. Photogram. Remote Sens. 63, 272–282 (2008)

    Article  Google Scholar 

  50. M. Cramer, D. Stallmann: System calibration for direct georeferencing, ISPRS Commission III Symposium, Graz (2002) p. 6

    Google Scholar 

  51. E. Kruck: Combined IMU and sensor calibration with bingo-f, Proc. OEEPE Workshop, CD-ROM, Hannover (2001) pp. 84–108

    Google Scholar 

  52. J. Skaloud, P. Schaer: Towards a more rigorous boresight calibration, ISPRS InternationalWorkshop on Theory Technology and Realities of Inertial/GPS/Sensor Orientation Castelldefels (2003)

    Google Scholar 

  53. D. Cosandier: Generating a digital elevation model and orthomosaic from pushbroom imagery (The University of Calgary, Calgary 1999), UCGE report no. 20133

    Google Scholar 

  54. U. Tempelmann, L. Hinsken: Triangulation of ADS40 pushbroom image blocks – not much different from classical frame blocks?, SGPBF Annual Meeting, Lausanne (2005)

    Google Scholar 

  55. H. Burman: Calibration and orientation of airborne image and laser scanner data using GPS and INS. Ph.D. Thesis (Royal Institute of Technology, Stockholm 2000)

    Google Scholar 

  56. H. Kager: Discrepancies between overlapping laser scanning strips - simultaneous fitting of aerial laser scanner strips, Arch. Photogram. Remote Sens. Spatial Inf. Sci. 35(B1), 555–560 (2004)

    Google Scholar 

  57. K. Morin, N. El-Sheimy: Post-mission adjustment of airborne laser scanning data, FIG XXII International Congress, Washington DC,CD-ROM (2002) p. 12

    Google Scholar 

  58. P. Friess: Toward a rigorous methodology for airborne laser mapping, Proc. Euro-COW, CD-ROM, Castelldefels (2006) p. 7

    Google Scholar 

  59. J. Skaloud, D. Lichti: Rigorous approach to bore-sight self calibration in airborne laser scanning, ISPRS J. Photogram. Remote Sens. 61, 47–59 (2006)

    Article  Google Scholar 

  60. W. Förstner, B. Wrobel: Mathematical concepts in photogrammetry. In: Manual of Photogrammetry, 5th edn., ed. by J. Mc-Glone, E. Mikhail (American Society of Photogrammetry and Remote Sensing, Bethesda 2004) pp. 15–180

    Google Scholar 

  61. A. Bjerhammar: Theory of errors and generalized matrix inverses (Elsevier, Amsterdam 1973)

    Google Scholar 

  62. C. Schmid, R. Mohr, C. Bauckhage: Evaluation of interest point detectors, Int. J. Comput. Vis. 37(2), 151–172 (2000)

    Article  Google Scholar 

  63. I. Jazayeri, C. Fraser: Interest operators for feature-based matching in close range photogrammetry, Photogramm. Rec. 25(129), 24–41 (2010)

    Article  Google Scholar 

  64. R.M. Haralick, L.G. Shapiro: Computer and Robot Visions (Addison-Wesley, Reading 1992)

    Google Scholar 

  65. W. Förstner, E. Gülch: A fast operator for detection and precise location of distinct points, corners and centers of circular features, Proc. of the ISPRS Intercommission Workshop on Fast Processing of Photogrammetric Data. (1987) pp. 281–305

    Google Scholar 

  66. C. Harris, M. Stephens: A combined corner and edge detector, Proc. 4th Alvey Vision Conference. (1988) pp. 147–151

    Google Scholar 

  67. D.G. Lowe: Distinctive image features from scale invariant key points, Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  68. M.A. Fischler, R.C. Bolles: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM 24, 381–395 (1981)

    Article  Google Scholar 

  69. D. Nistér: An efficient solution to the five-point relative pose problem, IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  70. C. Ressl, H. Kager, G. Mandlburger: Quality checking of als projects using statistics of strip differences, Int. Arch. Photogramm. Remote Sens. XXXVII, 253–260 (2008)

    Google Scholar 

  71. P.J. Besl, N. McKay: A method for registration of 3-D shapes, IEEE PAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  72. J. Skaloud: Reliability of direct georeferencing phase 1: An overview of the current approaches and possibilities, Checking and Improving of Digital Terrain Models / Reliability of Direct Georeferencing, EuroSDR Offic, Vol. 51 (Bundesamt für Kartographie und Geodäsie, Frankfurt 2006)

    Google Scholar 

  73. I. Colomina: From off-line to on-line geocoding: The evolution of sensor orientation, Proc. Photogrammetric Week 2007 (Wichmann, Heidelberg 2007) pp. 173–183

    Google Scholar 

  74. M. Cramer: The ADS40 Vaihingen/Enz geometric performance test, J. Photogramm. Remote Sens. 60, 363–374 (2006)

    Article  Google Scholar 

  75. M. Cramer: The EuroSDR network on digital camera calibration, Phase 1, Tech. Rep. Inst. Photogrammetry (University of Stuttgart, Stuttgart 2004)

    Google Scholar 

  76. S. Filin, G. Vosselman: Adjustment of airborne laser altimetry strips, Int. Arch. Photogramm. Remote Sens. 34, 285–289 (2004)

    Google Scholar 

  77. N. El-Sheimy, C. Valeo, A. Habib: Digital Terrain Modeling (Artech House, London 2005)

    Google Scholar 

  78. DIN 18740-2:2003: Photogrammetric products – Part 3: Requirements for the orthophoto (DIN, Berlin 2003)

    Google Scholar 

  79. K. Kraus: Photogrammetrie (Dümmler, Bonn 1994)

    Google Scholar 

  80. T. Luhmann: Nahbereichsphotogrammetrie – Grundlagen, Methoden, Anwendungen (Wichmann, Berlin 2003)

    Google Scholar 

  81. ISO 19123 (2005): Geographic information – Schema for coverage geometry and functions (ISO, Geneva 2005)

    Google Scholar 

  82. F. Zhao, L. Guibas: Wireless Sensor Networks: An Information Processing Approach (Morgan Kaufmann, San Francisco 2004)

    Google Scholar 

  83. S. Nittel, A. Stefanidis, I. Cruz, M. Egenhofer, D.A. Goldin, A. Howard, A. Labrinidis, S. Madden, A. Voisard, M. Worboys: Report from the First Workshop on Geo Sensor Networks, SIGMOD Record, Special Issue on Sensor Network Technology Infrastructure, Security, Data processing, and Deployment, ed. by V. Kumar (ACM SIGMOD, New York 2004)

    Google Scholar 

  84. S. Nittel: A survey of geosensor networks: Advances in dynamic environmental monitoring, Sensors 9(7), 5664–5678 (2009)

    Article  Google Scholar 

  85. S. Madden, M. Franklin, J. Hellerstein, W. Hong: TAG Tiny AGgregate queries in ad-hoc sensor networks, Proc. USENIX Symposium on Operating Systems Design and Implementation (Boston 2002)

    Google Scholar 

  86. W. Demtröder, S. Svanberg: Optical and spectroscopic techniques. In: Springer Handbook of Layers and Optics, ed. by F. Träger (Springer, Berlin Heidelberg 2007), Chap. 13.3

    Google Scholar 

  87. J.J. Leonard, H.F. Durrant-Whyte: Simultaneous map building and localization for an autonomous mobile robot, Proc. IEEE/RSJ International Workshop on Intelligent Robots and Systems (1991) pp. 1442–1447

    Google Scholar 

  88. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)

    Google Scholar 

  89. J.O. Wallgrün: Hierarchical Voronoi Graphs - Spatial Representation and Reasoning for Mobile Robots (Springer, Berlin, Heidelberg 2010)

    Google Scholar 

  90. S. Thrun: Probabilistic algorithms in robotics, AI Mag. 21(4), 93–109 (2000)

    Google Scholar 

  91. D. Montello: The Cambridge Handbook of Visuospatial Thinking, Chap. 7 (Cambridge Univ. Press, Cambridge 2005) pp. 257–294

    Google Scholar 

  92. ISO 19133 (2005): Geographic Information – Location based services – Tracking and navigation (ISO, Geneva 2005)

    Google Scholar 

  93. T. Levitt, D. Lawton: Qualitative navigation for mobile robots, Artif. Intell. 44, 305–360 (1990)

    Article  Google Scholar 

  94. B. Kuipers: The spatial semantic hierarchy, Art. Intell. 119, 191–233 (2000)

    Article  Google Scholar 

  95. S. Engelson, D. McDermott: Error correction in mobile robot map learning, Proc. IEEE Conference on Robotics and Automation, ICRA92 (1977) pp. 2555–2560

    Google Scholar 

  96. C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.A. Fernández-Madrigal, J. González: Multi-hierarchical semantic maps for mobile robotics, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-05 (2005) pp. 3492–3497

    Google Scholar 

  97. P. Buschka, A. Saffiotti: Some notes on the use of hybrid maps for mobile robots, Proc. International Conference on Intelligent Autonomous Systems, (IAS-04) (2004) pp. 547–556

    Google Scholar 

  98. A. Elfes: Using occupancy grids for mobile robot perception and navigation, Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  99. H.P. Moravec, A. Elfes: High resolution maps from angle sonar, Proc. IEEE Conference on Robotics and Automation, ICRA-85 (1985) pp. 116–121

    Google Scholar 

  100. H.P. Moravec: Robot spatial perception by stereoscopic vision and 3D evidence grids, (1996) Tech. Rep. CMU-RI-TR-96-34

    Google Scholar 

  101. R.A. Howard: Dynamic Programming and Markov Processes (Wiley, New York 1960)

    Google Scholar 

  102. B. Yamauchi: A frontier-based approach for autonomous exploration, Proc. 1997 IEEE Int. Symp. Computational Intell. Robot. Automat. (1997) p. 146

    Google Scholar 

  103. F. Bourgault, A. Makarenko, S. Williams, B. Grocholsky, H. Durrant-Whyte: Information based adaptive robotic exploration, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS-02, Vol. 1 (IEEE, Bellingham 2002) pp. 540–545

    Chapter  Google Scholar 

  104. H. Samet: An overview of quadtrees, octrees and related hierarchical data structures, NATO ASI Ser. F 40, 51–68 (1988)

    Google Scholar 

  105. A. Zelinsky: A mobile robot exploration algorithm, IEEE Trans. Robot. Autom. 8(6), 707–717 (1992)

    Article  Google Scholar 

  106. ISO 19125:2004: Geographic information - Simple feature access (ISO, Geneva 2004)

    Google Scholar 

  107. ISO 19107:2003: Geographic information - Spatial schema (ISO, Geneva 2003)

    Google Scholar 

  108. D. Hähnel, W. Burgard, S. Thrun: Learning compact 3D models of indoor and outdoor environments with a mobile robot, Robot. Auton. Syst. 44, 15–27 (2003)

    Article  Google Scholar 

  109. J.-C. Latombe: Robot Motion Planning (Kluwer Academic, Dordrecht 1991)

    Book  Google Scholar 

  110. J. Guivant, E.M. Nebot: Optimization of the simultaneous localization and map-building algorithm for real-time implementation, IEEE Trans. Robot. Autom. 17(3), 242–257 (2001)

    Article  Google Scholar 

  111. U. Frese: Treemap: An O( log n) algorithm for indoor simultaneous localization and mapping, Auton. Robot. 21(2), 103–122 (2006)

    Article  Google Scholar 

  112. S.B. Williams, P.M. Newman, J. Rosenblatt, G. Dissanayake, H.F. Durrant-Whyte: Autonomous underwater navigation and control, Robotica 19(5), 481–496 (2001)

    Article  Google Scholar 

  113. M.O. Franz, B. Schölkopf, H.A. Mallot, H.H. Bülthoff: Learning view graphs for robot navigation, Auton. Robot. 5(1), 111–125 (1998)

    Article  Google Scholar 

  114. S. Werner, B. Krieg-Brückner, T. Herrmann: Modelling navigational knowledge by route graphs, LNCS,LNAI 1849, 295–316 (2000)

    Google Scholar 

  115. T. Brinkhoff: Geodatenbanksysteme in Theorie und Praxis (Wichmann, Berlin 2008)

    Google Scholar 

  116. D.T. Lee, R.L.S. Drysdale III: Generalization of Voronoi diagrams in the plane, SIAM J. Comput. 10(1), 73–87 (1981)

    Article  Google Scholar 

  117. H. Blum: A transformation for extracting new descriptors of shape, Models for the Perception of Speech and Visual Form (MIT, Cambridge 1967) pp. 362–381

    Google Scholar 

  118. E.W. Dijkstra: A note on two problems in connexion with graphs, Numer. Math. 1, 269–271 (1959)

    Article  Google Scholar 

  119. P. Hart, N. Nilsson, B. Raphael: A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

    Article  Google Scholar 

  120. S. Thrun: Learning metric-topological maps for indoor mobile robot navigation, Artif. Intell. 99(1), 21–71 (1998)

    Article  Google Scholar 

  121. J.A. Fernández, J. González: A general world representation for mobile robot operations, Seventh Conference of the Spanish Association for the Artificial Intelligence CAEPIAʼ97 (1997) p. 3544

    Google Scholar 

  122. W.K. Yeap, M.E. Jefferies: Computing a representation of the local environment, Artif. Intell. 107, 265–301 (1999)

    Article  Google Scholar 

  123. R.E. Kalman: A new approach to linear filtering and prediction problems, ASME J. Basic Eng. D 82, 35–45 (1960)

    Article  Google Scholar 

  124. H. Durrant-Whyte, T.C. Henderson: Multisensor data fusion. In: Springer Handbook of Robotics, ed. by B. Siziliano, O. Khatib (Springer, Berlin Heidelberg 2008), Chap. 25

    Google Scholar 

  125. R.C. Smith, P. Cheeseman: On the representation and estimation of spatial uncertainty, Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  126. A. Mutambara: Decentralized estimation and control for multisensor systems (CRC Press, Boca Raton 1998)

    Google Scholar 

  127. A. Doucet, N. de Freitas, K.P. Murphy, S.J. Russell: Rao-Blackwellized particle filtering for dynamic Bayesian networks, Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI ʼ00) (Morgan Kaufmann, San Francisco 2000) pp. 176–183

    Google Scholar 

  128. B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, F. Savelli: Local metrical and global topological maps in the hybrid spatial semantic hierarchy, Proc. IEEE International Conference on Robotics and Automation 2004, ICRA-04 (2004) pp. 4845–4851

    Google Scholar 

  129. I.J. Cox, J.J. Leonard: Modeling a dynamic environment using a Bayesian multiple hypothesis approach, Artif. Intell. 66(2), 311–344 (1994)

    Article  Google Scholar 

  130. A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum likelihood from incomplete data via the EM algorithm, J. R. Statist. Soc. B 39, 1–38 (1977)

    Google Scholar 

  131. S. Thrun, W. Burgard, D. Fox: A probabilistic approach to concurrent mapping and localization for mobile robots, Mach. Learn. 31(1–3), 29–53 (1998)

    Article  Google Scholar 

  132. G. Grisetti, C. Stachniss, W. Burgard: Improved techniques for grid mapping with Rao-Blackwellized particle filters, IEEE Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  133. M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proc. AAAI National Conference on Artificial Intelligence (2002) pp. 593–598

    Google Scholar 

  134. D. Hähnel, W. Burgard, D. Fox, S. Thrun: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-03 (2003) pp. 206–211

    Google Scholar 

  135. B. Siciliano, O. Khatib (Eds.): Springer Handbook of Robotics (Springer, Berlin, Heidelberg 2008), Part E: Mobile and Distributed Robotics

    Google Scholar 

  136. K.E. Foote, D.J. Huebner: Error, Accuracy, and Precision (Department of Geography, University of Texas at Austin 1995), available from http://www.colorado.edu/geography/gcraft/notes/error/error_f.html (last access 2/10/2011)

    Google Scholar 

  137. R.A. Knippers: Geometric aspects of mapping (ITC, Enschede, Department of Geo-information Processing 2010), available from http://www.kartografie.nl/geometrics/coordinate%20transformations/coordtrans.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Cramer , Wolfgang Kresse , Jan Skaloud , Norbert Haala , Silvia Nittel or Jan O. Wallgrün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Cramer, M., Kresse, W., Skaloud, J., Haala, N., Nittel, S., Wallgrün, J.O. (2011). Data Capture. In: Kresse, W., Danko, D. (eds) Springer Handbook of Geographic Information. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72680-7_9

Download citation

Publish with us

Policies and ethics