Abstract
In this paper, we present a novel simple method based on the idea of exploiting the Shannon entropy as a measure of the inter-influence relationships between neighboring nodes of a mesh to optimize node locations. The method can be used in a pre-processing stage for subsequent studies such as finite element analysis by providing better input parameters for these processes. Experimental results are included to demonstrate the functionality of our method.
Chapter PDF
Similar content being viewed by others
References
Frey, P.J.: About Surface Remeshing. In: Proc. of the 9th Int. Mesh Roundtable, pp. 123–136 (2000)
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silvia, C.T.: Point Set Surfaces. In: Proc. of IEEE Visualization 2001, pp. 21–23 (2002)
Pauly, M., Gross, M., Kobbelt, L.: Efficient Simplification of Point-Sampled Surfaces. In: Proc. of IEEE Visualization 2002, pp. 163–170 (2002)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface Reconstruction from Unorganized Points. In: Proceedings of SIGGRAPH ’92, pp. 71–78 (1992)
Amenta, N., Choi, S., Kolluri, R.: The Powercrust. In: Proc. of the 6th ACM Symposium on Solid Modeling and Applications, pp. 609–633 (1980)
Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral Surface Reconstruction From Noisy Point Clouds. In: Symposium on Geometry Processing, pp. 11–21 (2004)
Blahut, R.E.: Principles and Practice of Information Theory. Addison-Wesley, Reading (1987)
Shepard, D.: A Two-Dimensional Interpolation Function for Irregularly Spaced Data. In: Proc. of the 23th Nat. Conf. of the ACM, pp. 517–523 (1968)
Franke, R., Nielson, G.: Smooth Interpolation of Large Sets of Scattered Data. Journal of Numerical Methods in Engineering 15, 1691–1704 (1980)
Alliez, P., de Verdiere, E.C., Devillers, O., Isenburg, M.: Isotropic Surface Remeshing. In: Proc. of Shape Modeling International, pp. 49–58 (2003)
Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desburn, M.: Anisotropic Polygonal Remeshing. Inria Preprint 4808 (2003)
Liepa, P.: Filling Holes in Meshes. In: Proc. of 2003 Eurographics/ACM SIGGRAPH symp. on Geometry processing, vol. 43, pp. 200–205.
Carr, J.C., Mitchell, T.J., Beatson, R.K., Cherrie, J.B., Fright, W.R., McCallumn, B.C., Evans, T.R.: Filling Holes in Meshes. In: Proc. of SIGGRAPH’01, pp. 67–76 (2001)
Wendland, H.: Piecewise Polynomial, Positive Defined and Compactly Supported Radial Functions of Minimal Degree. AICM 4, 389–396 (1995)
Nelder, J.A., Mead, R.: A simplex Method for Function Minimization. Computer J. 7, 308–313 (1965)
Bookstein, F.L.: Morphometric Tools for Landmarks Data. Cambridge University Press, Cambridge (1991), Computer J. 7, 308–313 (1965)
Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)
Garland, M.: A Multiresolution Modeling: Survey and Future Opportunities. In: Proc. of EUROGRAPHICS, State of the Art Reports (1999)
Bossen, F.J., Heckbert, P.S.: A Pliant Method for Anisotropic Mesh Generation. In: Proc. of the 5th International Meshing Roundtable, pp. 63–74 (1996)
Zhou, T., Shimada, K.: An Angle-Based Approach to Two-dimensional Mesh Smoothing. In: Proc. of the 9th International Meshing Roundtable, pp. 373–384 (2000)
Krysl, P., Belytchko, T.: An Efficient Linear-precision Partition of Unity Basis for Unstructured Meshless Methods. Communications in Numerical Methods in Engineering 16, 239–255 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Savchenko, V., Savchenko, M., Egorova, O., Hagiwara, I. (2007). The Shannon Entropy-Based Node Placement for Enrichment and Simplification of Meshes. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72586-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-72586-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72585-5
Online ISBN: 978-3-540-72586-2
eBook Packages: Computer ScienceComputer Science (R0)