Abstract
The performance of naive Bayes text classifier is greatly influenced by parameter estimation, while the large vocabulary and scarce labeled training set bring difficulty in parameter estimation. In this paper, several smoothing methods are introduced to estimate parameters in naive Bayes text classifier. The proposed approaches can achieve better and more stable performance than Laplace smoothing.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)
McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text classification. In: AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41–48 (1998)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Fisher, D.H. (ed.) Proceedings of ICML’97, Nashville, US, pp. 412–420 (1997)
Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. In: Joshi, A., Palmer, M. (eds.) Proceedings of Annual Meeting of the ACL’96, pp. 310–318 (1996)
Ney, H., Essen, U., Kneser, R.: On structuring probabilistic dependences in stochastic language modeling. Computer, Speech, and Language, 1-38 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
He, F., Ding, X. (2007). Improving Naive Bayes Text Classifier Using Smoothing Methods. In: Amati, G., Carpineto, C., Romano, G. (eds) Advances in Information Retrieval. ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_73
Download citation
DOI: https://doi.org/10.1007/978-3-540-71496-5_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71494-1
Online ISBN: 978-3-540-71496-5
eBook Packages: Computer ScienceComputer Science (R0)