Summary
Streamline predicates are simply boolean functions on the set of all streamlines in a flow field. A characteristic set of a streamline predicate is the set of all streamlines fulfilling the predicate. If streamline predicates are defined based on asymptotic behavior, the characteristic sets become α- or ω-basins. Using boolean algebra on the streamline predicates, we obtain the usual flow topology. We show that these considerations allow us to generalize flow topology to flow structure definitions. These flow structure definitions can be flexibly adapted to typical analysis tasks arising in flow studies and taylored to the users' needs
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Bauer and Peikert R. Vortex Tracking in Scale Space. In D. Bauer, P. Brunet, and I. Navazo, editors, Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2002 (EuroVis 2002), pages 233-240, 2002.
H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data. In Proceedings of the 5th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym 2003), pages 239 - 248, 2003.
C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vectorfield singularities in unstructured 3d-time dependent datasets. In IEEE Visualization 2004, pages 329- 336, Austin, Texas, 2004.
C. Garth, Tricoche X., T. Salzbrunn, Bobach T., and G. Scheuermann. Surface Techniques for Vortex Visualization. In VisSym, pages 155-164, 346, 2004.
M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea. Flow Field Clustering via Algebraic Multigrid. In IEEE Visualization 2004, pages 35-42, Austin, Texas, 2004.
B Heckel, G.H. Weber, B Hamann, and K.I. Joy. Construction of Vector Field Hierarchies. In IEEE Visualization 1999, pages 19-25, San Francisco, CA, 1999.
J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11(3):36-46, May 1991.
J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics, 285:69-94, 1995.
H. Löffelmann, T Kucera, and Gröller E. Visualizing Poincare Maps Together with the Underlying Flow. In H.C. Hege and K. Polthier, editors, Proceedings of the International Workshop on Visualization and Mathematics 1997 (VisMath’97), pages 315-328, 1998.
K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy. Topological Segmentation of Three-Dimensional Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198-205, 2004.
R. Peikert and M. Roth. The Parallel Vectors Operator - a Vector Field Visualization Primitive. In IEEE Visualization 1999, pages 263-270, San Francisco, CA, 1999.
F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. The State of the Art in Flow Visualization: Feature Extraction and Tracking. In Computer Graphics Forum 22, volume 4, pages 775-792, 2003.
T. Preusser and M. Rumpf. Anisotropic nonlinear diffusion in flow visualization. In IEEE Visualization 1999, pages 325-332, San Francisco, CA, 1999.
G. Scheuermann, Krüger H., M. Menzel, and Rockwood A. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109-116, 1998.
G. Scheuermann, I.J. Kenneth, and W. Kollmann. Visualizing Local Vector Field Topology. Journal of Electronic Imaging, 9:356-367, 2000.
A. Telea and J.J. van Wijk. Simplified representation of vector fields. In IEEE Visualization 1999, pages 35-42, San Francisco, CA, 1999.
H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel. Saddle Connectors - An Approach to Visualizing the Topological Skeleton of Complex 3d Vector Fields. In IEEE Visualization 2003, pages 225-232, 2003.
X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topological Tracking for the Visualization of Timedependent Two-Dimensional Flows. Computers & Graphics, 26(2):249-257, 2002.
T. van Walsum, F. H. Post, D. Silver, and F. J. Post. Feature Extraction and Iconic Visualization. IEEE Transactions on Visualization and Computer Graphics, 2(2):111-119, 1996.
G.H. Vatistas. New Model for Intense Self-Similar Vortices. Experiments in Fluids, 14(4):462-469, 1998.
T. Weinkauf, H. Theisel, H.C. Hege, and Seidel H.P. Boundary Switch Connectors for Topological Visualization of Complex 3d Vector Fields. In Proceedings of the 6th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym 2004), pages 183 - 192, 2004.
A Wiebel, C Garth, and G Scheuermann. Localized Flow Analysis of 2d and 3d Vector Fields. In Ken Brodlie, David Duke, and Ken Joy, editors, Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2005 (EuroVis 2005), pages 143-150, 2005.
T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed Streamlines in Planar Flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165-172, 2001.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salzbrunn, T., Scheuermann, G. (2007). Streamline Predicates as Flow Topology Generalization. In: Hauser, H., Hagen, H., Theisel, H. (eds) Topology-based Methods in Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70823-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-70823-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70822-3
Online ISBN: 978-3-540-70823-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)