[go: up one dir, main page]

Skip to main content

Streamline Predicates as Flow Topology Generalization

  • Conference paper
Topology-based Methods in Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Streamline predicates are simply boolean functions on the set of all streamlines in a flow field. A characteristic set of a streamline predicate is the set of all streamlines fulfilling the predicate. If streamline predicates are defined based on asymptotic behavior, the characteristic sets become α- or ω-basins. Using boolean algebra on the streamline predicates, we obtain the usual flow topology. We show that these considerations allow us to generalize flow topology to flow structure definitions. These flow structure definitions can be flexibly adapted to typical analysis tasks arising in flow studies and taylored to the users' needs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Bauer and Peikert R. Vortex Tracking in Scale Space. In D. Bauer, P. Brunet, and I. Navazo, editors, Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2002 (EuroVis 2002), pages 233-240, 2002.

    Google Scholar 

  2. H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data. In Proceedings of the 5th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym 2003), pages 239 - 248, 2003.

    Google Scholar 

  3. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vectorfield singularities in unstructured 3d-time dependent datasets. In IEEE Visualization 2004, pages 329- 336, Austin, Texas, 2004.

    Google Scholar 

  4. C. Garth, Tricoche X., T. Salzbrunn, Bobach T., and G. Scheuermann. Surface Techniques for Vortex Visualization. In VisSym, pages 155-164, 346, 2004.

    Google Scholar 

  5. M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea. Flow Field Clustering via Algebraic Multigrid. In IEEE Visualization 2004, pages 35-42, Austin, Texas, 2004.

    Chapter  Google Scholar 

  6. B Heckel, G.H. Weber, B Hamann, and K.I. Joy. Construction of Vector Field Hierarchies. In IEEE Visualization 1999, pages 19-25, San Francisco, CA, 1999.

    Google Scholar 

  7. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11(3):36-46, May 1991.

    Article  Google Scholar 

  8. J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics, 285:69-94, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Löffelmann, T Kucera, and Gröller E. Visualizing Poincare Maps Together with the Underlying Flow. In H.C. Hege and K. Polthier, editors, Proceedings of the International Workshop on Visualization and Mathematics 1997 (VisMath’97), pages 315-328, 1998.

    Google Scholar 

  10. K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy. Topological Segmentation of Three-Dimensional Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198-205, 2004.

    Article  Google Scholar 

  11. R. Peikert and M. Roth. The Parallel Vectors Operator - a Vector Field Visualization Primitive. In IEEE Visualization 1999, pages 263-270, San Francisco, CA, 1999.

    Google Scholar 

  12. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. The State of the Art in Flow Visualization: Feature Extraction and Tracking. In Computer Graphics Forum 22, volume 4, pages 775-792, 2003.

    Article  Google Scholar 

  13. T. Preusser and M. Rumpf. Anisotropic nonlinear diffusion in flow visualization. In IEEE Visualization 1999, pages 325-332, San Francisco, CA, 1999.

    Google Scholar 

  14. G. Scheuermann, Krüger H., M. Menzel, and Rockwood A. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109-116, 1998.

    Article  Google Scholar 

  15. G. Scheuermann, I.J. Kenneth, and W. Kollmann. Visualizing Local Vector Field Topology. Journal of Electronic Imaging, 9:356-367, 2000.

    Article  Google Scholar 

  16. A. Telea and J.J. van Wijk. Simplified representation of vector fields. In IEEE Visualization 1999, pages 35-42, San Francisco, CA, 1999.

    Google Scholar 

  17. H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel. Saddle Connectors - An Approach to Visualizing the Topological Skeleton of Complex 3d Vector Fields. In IEEE Visualization 2003, pages 225-232, 2003.

    Google Scholar 

  18. X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topological Tracking for the Visualization of Timedependent Two-Dimensional Flows. Computers & Graphics, 26(2):249-257, 2002.

    Article  Google Scholar 

  19. T. van Walsum, F. H. Post, D. Silver, and F. J. Post. Feature Extraction and Iconic Visualization. IEEE Transactions on Visualization and Computer Graphics, 2(2):111-119, 1996.

    Article  Google Scholar 

  20. G.H. Vatistas. New Model for Intense Self-Similar Vortices. Experiments in Fluids, 14(4):462-469, 1998.

    Google Scholar 

  21. T. Weinkauf, H. Theisel, H.C. Hege, and Seidel H.P. Boundary Switch Connectors for Topological Visualization of Complex 3d Vector Fields. In Proceedings of the 6th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym 2004), pages 183 - 192, 2004.

    Google Scholar 

  22. A Wiebel, C Garth, and G Scheuermann. Localized Flow Analysis of 2d and 3d Vector Fields. In Ken Brodlie, David Duke, and Ken Joy, editors, Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2005 (EuroVis 2005), pages 143-150, 2005.

    Google Scholar 

  23. T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed Streamlines in Planar Flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165-172, 2001.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salzbrunn, T., Scheuermann, G. (2007). Streamline Predicates as Flow Topology Generalization. In: Hauser, H., Hagen, H., Theisel, H. (eds) Topology-based Methods in Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70823-0_5

Download citation

Publish with us

Policies and ethics