[go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5108))

Abstract

The automatic subcellular localisation of proteins in living cells is a critical step in determining their function. The evaluation of fluorescence images constitutes a common method of localising these proteins. For this, additional knowledge about the position of the considered cells within an image is required. In an automated system, it is advantageous to recognise these cells in bright-field microscope images taken in parallel with the regarded fluorescence micrographs. Unfortunately, currently available cell recognition methods are only of limited use within the context of protein localisation, since they frequently require microscopy techniques that enable images of higher contrast (e.g. phase contrast microscopy or additional dyes) or can only be employed with too low magnifications. Therefore, this article introduces a novel approach to the robust automatic recognition of unstained living cells in bright-field microscope images. Here, the focus is on the automatic segmentation of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O’Shea, E.K.: Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  Google Scholar 

  2. Liebel, U., Starkuviene, V., Erfle, H., Simpson, J.C., Poustka, A., Wiemann, S., Pepperkok, R.: A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Letters 554, 394–398 (2003)

    Article  Google Scholar 

  3. Murphy, R.F., Velliste, M., Porreca, G.: Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. Journal of VLSI Signal Processing 35, 311–321 (2003)

    Article  MATH  Google Scholar 

  4. Chen, X., Murphy, R.F.: Interpretation of Protein Subcellular Location Patterns in 3D Images Across Cell Types and Resolutions. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI), vol. 4414, pp. 328–342. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Tscherepanow, M., Kummert, F.: Subcellular localisation of proteins in living cells using a genetic algorithm and an incremental neural network. In: Bildverarbeitung für die Medizin 2007, pp. 11–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Tsien, R.Y.: The green fluorescent protein. Annual Review of Biochemistry 67, 509–544 (1998)

    Article  Google Scholar 

  7. Tscherepanow, M., Zöllner, F., Kummert, F.: Aktive Konturen für die robuste Lokalisation von Zellen. In: Bildverarbeitung für die Medizin 2005, pp. 375–379. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Debeir, O., Ham, P.V., Kiss, R., Decaestecker, C.: Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Transactions on Medical Imaging 24, 697–711 (2005)

    Article  Google Scholar 

  9. Ray, N., Acton, S.T., Ley, K.: Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Transactions on Medical Imaging 21, 1222–1235 (2002)

    Article  Google Scholar 

  10. Zimmer, C., Labruyère, E., Meas-Yedid, V., Guillén, N., Olivo-Marin, J.C.: Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: A tool for cell-based drug testing. IEEE Transactions on Medical Imaging 21, 1212–1221 (2002)

    Article  Google Scholar 

  11. Nattkemper, T.W., Wersing, H., Ritter, H., Schubert, W.: A neural network architecture for automatic segmentation of fluorescence micrographs. Neurocomputing 48, 357–367 (2002)

    Article  MATH  Google Scholar 

  12. Raman, S., Maxwell, C.A., Barcellos-Hoff, M.H., Parvin, B.: Geometric approach to segmentation and protein localization in cell culture assays. Journal of Microscopy 225, 22–30 (2007)

    Article  MathSciNet  Google Scholar 

  13. Schubert, W., Friedenberger, M., Bode, M., Philipsen, L., Ritter, H., Nattkemper, T.W.: Automatic recognition of muscle invasive T-lymphocytes expressing dipeptidyl-peptidase IV (CD26), and analysis of the associated cell surface phenotypes. Journal of Theoretical Medicine 4, 67–74 (2002)

    Article  MATH  Google Scholar 

  14. Long, X., Cleveland, W.L., Yao, Y.L.: Effective automatic recognition of cultured cells in bright field images using Fisher’s linear discriminant preprocessing. Image and Vision Computing 23, 1203–1213 (2005)

    Article  Google Scholar 

  15. Long, X., Cleveland, W.L., Yao, Y.L.: Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure. Computers in Biology and Medicine 6, 339–362 (2006)

    Article  Google Scholar 

  16. Tscherepanow, M., Zöllner, F., Kummert, F.: Classification of segmented regions in brightfield microscope images. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 3, pp. 972–975. IEEE, Los Alamitos (2006)

    Google Scholar 

  17. Wu, K., Gauthier, D., Levine, M.: Live cell image segmentation. IEEE Transactions on Biomedical Engineering 42, 1–12 (1995)

    Article  Google Scholar 

  18. Chen, X., Yu, C.: Application of some valid methods in cell segmentation. In: Proceedings of SPIE, vol. 4550, pp. 340–344 (2001)

    Google Scholar 

  19. Grobe, M., Volk, H., Münzenmayer, C., Wittenberg, T.: Segmentierung von überlappenden Zellen in Fluoreszenz- und Durchlichtaufnahmen. In: Bildverarbeitung für die Medizin 2003, pp. 201–205. Springer, Heidelberg (2003)

    Google Scholar 

  20. Malpica, N., de Solórzano, C.O., Vaquero, J.J., Santos, A., Vallcorba, I.M., García-Sagredo, J., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 23, 289–297 (1997)

    Article  Google Scholar 

  21. Walker, R.F., Jackway, P.T., Lovell, B.: Classification of cervical cell nuclei using morphological segmentation and textural feature extraction. In: Australian and New Zealand Conference on Intelligent Information Systems, pp. 297–301 (1994)

    Google Scholar 

  22. Perner, P., Jänichen, S., Perner, H.: Case-based object recognition for airborne fungi recognition. Artificial Intelligence in Medicine 36, 137–157 (2006)

    Article  Google Scholar 

  23. Alexopoulos, L.G., Erickson, G.R., Guilak, F.: A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes. Journal of Microscopy 205, 125–135 (2002)

    Article  MathSciNet  Google Scholar 

  24. Young, D., Gray, A.J.: Cell identification in differential interference contrast microscope images using edge detection. In: Proceedings of the 7th British Machine Vision Conference (BMVC), vol. 1, pp. 133–142. BMVA Press (1996)

    Google Scholar 

  25. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  26. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19, 41–47 (1986)

    Article  Google Scholar 

  27. Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 562–667 (1996)

    Article  Google Scholar 

  28. van Herk, M.: A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recognition Letters 13, 517–521 (1992)

    Article  Google Scholar 

  29. Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. Computer Vision, Graphics, and Image Processing: Image Understanding 55, 14–26 (1992)

    MATH  Google Scholar 

  30. Cohen, L.D.: Note: On active contour models and balloons. Computer Vision, Graphics, and Image Processing: Image Understanding 53, 211–218 (1991)

    MATH  Google Scholar 

  31. Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 476–480 (1999)

    Article  Google Scholar 

  32. Tscherepanow, M., Jensen, N., Kummert, F.: Recognition of unstained live Drosophila cells in microscope images. In: Proceedings of the International Machine Vision and Image Processing Conference (IMVIP), pp. 169–176. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner Ovidio Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tscherepanow, M., Zöllner, F., Hillebrand, M., Kummert, F. (2008). Automatic Segmentation of Unstained Living Cells in Bright-Field Microscope Images. In: Perner, P., Salvetti, O. (eds) Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. MDA 2008. Lecture Notes in Computer Science(), vol 5108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70715-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70715-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70714-1

  • Online ISBN: 978-3-540-70715-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics