Abstract
Various authors have previously presented different approaches how to exploit multiple linear approximations to enhance linear cryptanalysis. In this paper we present a new truly multidimensional approach to generalise Matsui’s Algorithm 1. We derive the statistical framework for it and show how to calculate multidimensional probability distributions based on correlations of one-dimensional linear approximations. The main advantage is that the assumption about statistical independence of linear approximations can be removed. Then we apply these new techniques to four rounds of the block cipher Serpent and show that the multidimensional approach is more effective in recovering key bits correctly than the previous methods that use a multiple of one-dimensional linear approximations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, New York (1994)
Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)
Burton, S., Kaliski, J., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)
Biryukov, A., Canniére, C.D., Quisquater, M.: On Multiple Linear Approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)
Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)
Wagner, D.: Towards a unifying view of block cipher cryptanalysis. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 16–33. Springer, Heidelberg (2004)
Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130–142. Springer, Heidelberg (2005)
Collard, B., Standaert, F.X., Quisquater, J.J.: Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent. In: Proceedings of FSE 2008. LNCS, Springer, Heidelberg (to appear, 2008)
Nyberg, K., Hermelin, M.: Multidimensional Walsh Transform and a Characterization of Bent Functions. In: Tor Helleseth, P.V.K., Ytrehus, O. (eds.) Proceedings of the 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks, pp. 83–86. IEEE, Los Alamitos (2007)
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in Telecommunications and Signal Processing. Wiley-Interscience, Chichester (2006)
Junod, P.: On the Complexity of Matsui’s Attack. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)
Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryption Standard. In: First Advanced Encryption Standard (AES) conference (1998)
NIST: A request for Candidate Algorithm Nominations for the Advanced Encryption Standard AES (1997), http://csrc.nist.gov/archive/aes/index2.html
Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Heidelberg (2002)
Collard, B., Standaert, F., Quisquater, J. (2008), http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hermelin, M., Cho, J.Y., Nyberg, K. (2008). Multidimensional Linear Cryptanalysis of Reduced Round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds) Information Security and Privacy. ACISP 2008. Lecture Notes in Computer Science, vol 5107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70500-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-70500-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69971-2
Online ISBN: 978-3-540-70500-0
eBook Packages: Computer ScienceComputer Science (R0)