[go: up one dir, main page]

Skip to main content

Neural Network Method for Protein Structure Search Using Cell-Cell Adhesion

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

  • 1564 Accesses

Abstract

We propose a neural network method for three dimensional protein structure search that utilizes the link relationships among features. This method is an offline index-based method which builds indices for protein structures in the database and the search is performed on the indices. We can easily extend this method to incoporate more physical properties of the protein structures since the structural information is preserved in the extracted features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, N.P., Orengo, C.A., Taylor, W.R.: A protein structure comparison methodology. Computational Chemistry 20, 359–380 (1996)

    Article  Google Scholar 

  2. Caianiel, E.R., Capocelli, R.M.: On form and language: The procrustes algorithm for feature extraction. Biological Cybernetics 8, 223–233 (1971)

    Google Scholar 

  3. Gao, F., Zaki, M.J.: Psist: Indexing protein structures using suffix trees. In: Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB), pp. 212–222 (2005)

    Google Scholar 

  4. Godzik, A., Skolnick, J.: Flexible algorithm for direct multiple alignment of protein structures and sequences. Computer Applications in the Biosciences 10(6), 587–596 (1994)

    Google Scholar 

  5. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology 233, 123–138 (1993)

    Article  Google Scholar 

  6. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  7. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica A32, 922–923 (1978)

    Google Scholar 

  8. Liou, C.-Y.: Backbone structure of hairy memory. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 688–697. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Liou, C.-Y., Lin, S.-L.: Finite memory loading in hairy neurons. Natural Computing 5(1), 15–42 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liou, C.-Y., Yang, H.-C.: Handprinted character recognition based on spatial topology distance measurement. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 941–945 (1996)

    Article  Google Scholar 

  11. Liou, C.-Y., Yang, H.-C.: Selective feature-to-feature adhesion for recognition of cursive handprinted characters. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(2), 184–191 (1999)

    Article  Google Scholar 

  12. Liou, C.-Y., Yang, H.-C.: Self-organization of high-order receptive fields in recognition of handprinted characters. In: ICONIP, Perth, Australia, November 1999, pp. 1161–1166 (1999)

    Google Scholar 

  13. Aiyer, M.N.S.V.B., Fallside, F.: A theoretical investigation into the performance of the hopfield model. IEEE Transactions on Neural Networks 1(2), 204–215 (1990)

    Article  Google Scholar 

  14. Shibuya, T.: Geometric suffix tree: A new index structure for protein 3-d structures. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 84–93. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liou, CY., Ho, CJ. (2008). Neural Network Method for Protein Structure Search Using Cell-Cell Adhesion. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics