[go: up one dir, main page]

Skip to main content

Planning Among Movable Obstacles with Artificial Constraints

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

This paper presents artificial constraints as a method for guiding heuristic search in the computationally challenging domain of motion planning among movable obstacles. The robot is permitted to manipulate unspecified obstacles in order to create space for a path. A plan is an ordered sequence of paths for robot motion and object manipulation. We show that under monotone assumptions, anticipating future manipulation paths results in constraints on both the choice of objects and their placements at earlier stages in the plan. We present an algorithm that uses this observation to incrementally reduce the search space and quickly find solutions to previously unsolved classes of movable obstacle problems. Our planner is developed for arbitrary robot geometry and kinematics. It is presented with an implementation for the domain of navigation among movable obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: Real-time reasoning in complex environments. In: IEEE/RAS Int. Conf. on Humanoid Robotics, pp. 322–341. IEEE, Los Alamitos (2004), http://www.golems.org/NAMO

    Chapter  Google Scholar 

  2. Wilfong, G.: Motion panning in the presence of movable obstacles. In: ACM Symp. Computat. Geometry, pp. 279–288. ACM Press, New York (1988)

    Google Scholar 

  3. Demaine, E., Demaine, M., O’Rourke, J.: Pushpush and push-1 are np-hard in 2d. In: 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada, August 16-19, pp. 211–219 (2000)

    Google Scholar 

  4. Reif, J.H., Sharir, M.: Motion planning in the presence of moving obstacles. In: Proc. 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, pp. 144–154. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  5. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. The Int. J. of Robotics Research 21(3), 233–255 (2002)

    Article  Google Scholar 

  6. Brock, O., Khatib, O.: Elastic strips: Real-time path modification for mobile manipulation. In: International Symposium of Robotics Research, Hayama, Japan, pp. 117–122. Springer, Heidelberg (1997)

    Google Scholar 

  7. Fortune, S., Wilfong, G., Yap, C.: Coordinated motion of two robot arms. In: IEEE Int. Conf. on Robotics and Automation, pp. 1216–1223 (April 1986)

    Google Scholar 

  8. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. In: IEEE Int. Conf. on Robotics and Automation, April 7-10, pp. 1419–1424 (1986)

    Google Scholar 

  9. Schwartz, J., Sharir, M.: On the piano movers’ problem. iii: Coordinating the motion of several independent bodies. the special case of circular bodies moving amidst polygonal barriers. Int. J. Robotics Research 2(3), 46–74 (1983)

    Article  MathSciNet  Google Scholar 

  10. Goldwasser, M.H., Motwani, R.: Complexity measures for assembly sequences. The International Journal of Computational Geometry and Applications 9(4 & 5), 371–418 (1999)

    Article  MathSciNet  Google Scholar 

  11. Randall, H.: Wilson. On Geometric Assembly Planning. PhD thesis, Department of Computer Science, Stanford University, Stanford, CA, USA, UMI Order Number: UMI Order No. GAX92-21686 (1992)

    Google Scholar 

  12. Alami, R., Laumond, J.P., Sim’eon, T.: Two manipulation planning algorithms. In: Goldberg, K., Halperin, D., Latombe, J., Wilson, R. (eds.) Workshop on the Algorithmic Foundations of Robotics, San Francisco, California, United States, pp. 109–125. A. K. Peters, Ltd., Natick (1994)

    Google Scholar 

  13. Ben-Shahar, O., Rivlin, E.: Practical pushing planning for rearrangement tasks. IEEE Trans. on Robotics and Automation 14(4), 549–565 (1998)

    Article  Google Scholar 

  14. Ota, J.: Rearrangement of multiple movable objects. In: IEEE Int. Conf. Robotics and Automation (ICRA), New Orleans, LA, vol. 2, pp. 1962–1967. IEEE, Los Alamitos (2004)

    Google Scholar 

  15. Chen, P.C., Hwang, Y.K.: Pracitcal path planning among movable obstacles. In: IEEE Int. Conf. Robotics and Automation (ICRA), Sacramento, CA, pp. 444–449. IEEE, Los Alamitos (1991)

    Chapter  Google Scholar 

  16. Okada, K., Haneda, A., Nakai, H., Inaba, M., Inoue, H.: Environment manipulation planner for humaonid robots using task graph that generates action sequence. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, pp. 1174–1179. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  17. Chadzelek, T., Eckstein, J., Schömer, E.: Heuristic motion planning with movable obstacles. In: 8th Canadian Conference on Computational Geometry, Ottawa, Canada, August 12-15, pp. 131–136. Carleton University Press (1996)

    Google Scholar 

  18. Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Trans. Comput. 32(2), 108–120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ganter, M.A.: Dynamic Collision Det. using Kinematics and Solid Modeling Techniques(Mechanical Engineering). PhD thesis, University of Wisconsin (1985)

    Google Scholar 

  20. Foisy, A., Hayward, V.: A safe swept-volume approach to collision detection. In: Robotics Research, Sixth International Symposium (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stilman, M., Kuffner, J.J. (2008). Planning Among Movable Obstacles with Artificial Constraints. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics