Abstract
The forward M/EEG problem consists in simulating the electric potential and the magnetic field produced outside the head by currents in the brain related to neural activity. All previously proposed solutions using the Boundary Element Method (BEM) were based on a double-layer integral formulation. We have developed an alternative symmetric BEM formulation, achieving a significantly higher accuracy for sources close to tissue interfaces, namely in the cortex. Numerical experiments using a spherical semi-realistic multilayer head model with a known analytical solution are presented, showing that the new BEM performs better than the formulations used in our earlier comparisons, and in most cases outperforms the Finite Element Method (FEM) as far as accuracy is concerned, thus making the BEM a viable choice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Phillips, J.W., Leahy, R.M., Mosher, J.C., Timsari, B.: Imaging neural activity using MEG and EEG. IEEE Eng. Med. Biol., 34–41 (May 1997)
Sarvas, J.: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32(1), 11–22 (1987)
Hämäläinen, M., Hari, R., IImoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography— theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65, 413–497 (1993)
Geselowitz, D.B.: On the magnetic field generated outside an inhomogeneous volume conductor by internal volume currents. IEEE Trans. Magn. 6, 346–347 (1970)
Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, Heidelberg (2001)
Rahola, J., Tissari, S.: Iterative solution of dense linear systems arising from the electrostatic integral equation. Phys. Med. Biol. (47), 961–975 (2002)
Rahola, J., Tissari, S.: Iterative solution of dense linear systems arising from boundary element formulations of the biomagnetic inverse problem. Tech. Rep. TR/PA/98/40, CERFACS, Toulouse, France (1998)
Ferguson, A.S., Stroink, G.: Factors affecting the accuracy of the boundary element method in the forward problem — I: Calculating surface potentials. IEEE Trans. Biomed. Eng. 44, 1139–1155 (1997)
Clerc, M., Keriven, R., Faugeras, O., Kybic, J., Papadopoulo, T.: The fast multipole method for the direct E/MEG problem. In: Proceedings of ISBI, Washington, D.C., IEEE, NIH (2002)
Geselowitz, D.B.: On bioelectric potentials in an homogeneous volume conductor. Biophysics Journal 7, 1–11 (1967)
Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: Integral formulations for the eeg problem. Tech. Rep. 4735, INRIA (February 2003)
Gray, L.J., Paulino, G.H.: Symmetric Galerkin boundary integral formulation for interface and multi-zone problems. Internat. J. Numer. Methods Eng. 40(16), 3085–3103 (1997)
Layton, J.B., Ganguly, S., Balakrishna, C., Kane, J.H.: A symmetric Galerkin multi-zone boundary element formulation. Internat. J. Numer. Methods Eng. 40(16), 2913–2931 (1997)
Chan, T.F.: Deflated decomposition solution of nearly singular systems. SIAM J. Numer. Anal. 21, 739–754 (1984)
Tissari, S., Rahola, J.: Error analysis of a new Galerkin method to solve the forward problem in MEG and EEG using the boundary element method. Tech. Rep. TR/PA/98/39, CERFACS, Toulouse, France (1998)
Fischer, G., Tilg, B., Modre, R., Hanser, F., Messnarz, B., Wach, P.: On modeling the Wilson terminal in the Boundary and Finite Element Method. IEEE Trans. Biomed. Eng. 49, 217–224 (2002)
De Munck, J.C.: The potential distribution in a layered anisotropic spheroidal volume conductor. J. Appl. Phys 2, 464–470 (1988)
Zhang, Z.: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335–349 (1995)
Mosher, J.C., Leahy, R.B., Lewis, P.S.: EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering 46, 245–259 (1999)
Hämäläinen, M.S., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36, 165–171 (1989)
Clerc, M., Dervieux, A., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T.: Comparison of BEM and FEM methods for the E/MEG problem. In: Proceedings of BIOMAG 2002 (August 2002)
Barret, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vonst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994); Available from netlib
Tissari, S., Rahola, J.: A precorrected-FFT method to accelerate the solution of the forward problem in MEG. In: Proceedings of BIOMAG (2002)
Phillips, J.R., White, J.K.: A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. CAD Int. Circ. Syst. 16 (October 1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adde, G., Clerc, M., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T. (2003). Symmetric BEM Formulation for the M/EEG Forward Problem. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-45087-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40560-3
Online ISBN: 978-3-540-45087-0
eBook Packages: Springer Book Archive