[go: up one dir, main page]

Skip to main content

Symmetric BEM Formulation for the M/EEG Forward Problem

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Abstract

The forward M/EEG problem consists in simulating the electric potential and the magnetic field produced outside the head by currents in the brain related to neural activity. All previously proposed solutions using the Boundary Element Method (BEM) were based on a double-layer integral formulation. We have developed an alternative symmetric BEM formulation, achieving a significantly higher accuracy for sources close to tissue interfaces, namely in the cortex. Numerical experiments using a spherical semi-realistic multilayer head model with a known analytical solution are presented, showing that the new BEM performs better than the formulations used in our earlier comparisons, and in most cases outperforms the Finite Element Method (FEM) as far as accuracy is concerned, thus making the BEM a viable choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Phillips, J.W., Leahy, R.M., Mosher, J.C., Timsari, B.: Imaging neural activity using MEG and EEG. IEEE Eng. Med. Biol., 34–41 (May 1997)

    Google Scholar 

  2. Sarvas, J.: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32(1), 11–22 (1987)

    Article  Google Scholar 

  3. Hämäläinen, M., Hari, R., IImoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography— theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65, 413–497 (1993)

    Article  Google Scholar 

  4. Geselowitz, D.B.: On the magnetic field generated outside an inhomogeneous volume conductor by internal volume currents. IEEE Trans. Magn. 6, 346–347 (1970)

    Article  Google Scholar 

  5. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  6. Rahola, J., Tissari, S.: Iterative solution of dense linear systems arising from the electrostatic integral equation. Phys. Med. Biol. (47), 961–975 (2002)

    Google Scholar 

  7. Rahola, J., Tissari, S.: Iterative solution of dense linear systems arising from boundary element formulations of the biomagnetic inverse problem. Tech. Rep. TR/PA/98/40, CERFACS, Toulouse, France (1998)

    Google Scholar 

  8. Ferguson, A.S., Stroink, G.: Factors affecting the accuracy of the boundary element method in the forward problem — I: Calculating surface potentials. IEEE Trans. Biomed. Eng. 44, 1139–1155 (1997)

    Article  Google Scholar 

  9. Clerc, M., Keriven, R., Faugeras, O., Kybic, J., Papadopoulo, T.: The fast multipole method for the direct E/MEG problem. In: Proceedings of ISBI, Washington, D.C., IEEE, NIH (2002)

    Google Scholar 

  10. Geselowitz, D.B.: On bioelectric potentials in an homogeneous volume conductor. Biophysics Journal 7, 1–11 (1967)

    Article  Google Scholar 

  11. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: Integral formulations for the eeg problem. Tech. Rep. 4735, INRIA (February 2003)

    Google Scholar 

  12. Gray, L.J., Paulino, G.H.: Symmetric Galerkin boundary integral formulation for interface and multi-zone problems. Internat. J. Numer. Methods Eng. 40(16), 3085–3103 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Layton, J.B., Ganguly, S., Balakrishna, C., Kane, J.H.: A symmetric Galerkin multi-zone boundary element formulation. Internat. J. Numer. Methods Eng. 40(16), 2913–2931 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chan, T.F.: Deflated decomposition solution of nearly singular systems. SIAM J. Numer. Anal. 21, 739–754 (1984)

    Google Scholar 

  15. Tissari, S., Rahola, J.: Error analysis of a new Galerkin method to solve the forward problem in MEG and EEG using the boundary element method. Tech. Rep. TR/PA/98/39, CERFACS, Toulouse, France (1998)

    Google Scholar 

  16. Fischer, G., Tilg, B., Modre, R., Hanser, F., Messnarz, B., Wach, P.: On modeling the Wilson terminal in the Boundary and Finite Element Method. IEEE Trans. Biomed. Eng. 49, 217–224 (2002)

    Article  Google Scholar 

  17. De Munck, J.C.: The potential distribution in a layered anisotropic spheroidal volume conductor. J. Appl. Phys 2, 464–470 (1988)

    Article  Google Scholar 

  18. Zhang, Z.: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335–349 (1995)

    Article  Google Scholar 

  19. Mosher, J.C., Leahy, R.B., Lewis, P.S.: EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering 46, 245–259 (1999)

    Article  Google Scholar 

  20. Hämäläinen, M.S., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36, 165–171 (1989)

    Article  Google Scholar 

  21. Clerc, M., Dervieux, A., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T.: Comparison of BEM and FEM methods for the E/MEG problem. In: Proceedings of BIOMAG 2002 (August 2002)

    Google Scholar 

  22. Barret, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vonst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994); Available from netlib

    Google Scholar 

  23. Tissari, S., Rahola, J.: A precorrected-FFT method to accelerate the solution of the forward problem in MEG. In: Proceedings of BIOMAG (2002)

    Google Scholar 

  24. Phillips, J.R., White, J.K.: A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. CAD Int. Circ. Syst. 16 (October 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adde, G., Clerc, M., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T. (2003). Symmetric BEM Formulation for the M/EEG Forward Problem. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics