[go: up one dir, main page]

Skip to main content

LaGO – An Object Oriented Library for Solving MINLPs

  • Conference paper
Global Optimization and Constraint Satisfaction (COCOS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2861))

Abstract

The paper describes a software package called LaGO for solving nonconvex mixed integer nonlinear programs (MINLPs). The main component of LaGO is a convex relaxation which is used for generating solution candidates and computing lower bounds of the optimal value. The relaxation is generated by reformulating the given MINLP as a block-separable problem, and replacing nonconvex functions by convex underestimators. Results on medium size MINLPs are presented.

AMS classifications: 90C22, 90C20, 90C27, 90C26, 90C59

The work was supported by the German Research Foundation (DFG) under grant NO 421/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances. Computers and Chemical Engineering, 1137–1158 (1998)

    Google Scholar 

  2. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. of Global Opt. 9, 23–40 (1997)

    Article  MathSciNet  Google Scholar 

  3. Alperin, H., Nowak, I.: Lagrangian Smoothing Heuristics for MaxCut. Technical report, HU–Berlin NR–2002–6 (2002)

    Google Scholar 

  4. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - A Collection of Test Models for Mixed-Iinteger Nonlinear Programming. INFORMS J. Comput. 15(1) (2003)

    Google Scholar 

  5. Bussieck, M.R., Pruessner, A.: Mixed-integer nonlinear programming. SIAG/OPT Newsletter: Views & News. (2003)

    Google Scholar 

  6. Bliek, C., Spellucci, P., Vicente, L., Neumaier, A., Granvilliers, L., Monfroy, E., Benhamou, F., Huens, E., Van Hentenryck, P., Sam-Haroud, D., Faltings, B.: COCONUT Deliverable D1, Algorithms for Solving Nonlinear Constrained and Optimization Problems: The State of The Art (2001), http://www.mat.univie.ac.at/neum/glopt.html

  7. GAMS Development Corp. and GAMS Software GmbH. MINLP World (2002), http://www.gamsworld.org/minlp/

  8. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Company (1993)

    Google Scholar 

  9. Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  10. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT 5.3 user’s guide. Technical report, University of California, San Diego, Mathematics Department Report NA 97-4 (1997)

    Google Scholar 

  11. Gomes, F., Sorensen, D.: ARPACK++: a C++ Implementation of ARPACK eigenvalue package (1997), http://www.crpc.rice.edu/software/ARPACK/

  12. Horst, R., Pardalos, P.: Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  13. Kesavan, P., Allgor, R.J., Gatzke, E.P., Barton, P.I.: Outer Approximation Algorithms for Separable Nonconvex Mixed-Integer Nonlinear Programs. Submitted to Mathematical Programming (2001)

    Google Scholar 

  14. Nowak, I.: Lagrangian Decomposition of Mixed-Integer All-Quadratic Programs. Technical report, HU–Berlin NR–2002–7 (2002)

    Google Scholar 

  15. Phillips, A., Rosen, J., Walke, V.: Molecular structure determination by global optimization. Dimacs Series in Discrete Mathematics and Theoretical Computer Science, vol. 23, pp. 181–198 (1995)

    Google Scholar 

  16. Smith, E.M.B., Pantelides, C.C.: A Symbolic Reformulation/Spatial Branch and Bound Algorithm for the Global Optimization of nonconvex MINLPs. Computers and Chemical Engineering 23, 457–478 (1999)

    Article  Google Scholar 

  17. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  18. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Marti, R.: A multistart scatter search heuristic for smooth NLP and MINLP problems (2002), http://www.utexas.edu/courses/lasdon/papers.htm

  19. Vaidyanathan, R., EL-Halwagi, M.: Global optimization of nonconvex MINLP’s by interval analysis. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, pp. 175–193. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  20. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowak, I., Alperin, H., Vigerske, S. (2003). LaGO – An Object Oriented Library for Solving MINLPs. In: Bliek, C., Jermann, C., Neumaier, A. (eds) Global Optimization and Constraint Satisfaction. COCOS 2002. Lecture Notes in Computer Science, vol 2861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39901-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39901-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20463-3

  • Online ISBN: 978-3-540-39901-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics