Abstract
In this paper we develop a discrete, T 0 topology in which (1) closed sets play a more prominent role than open sets, (2) atoms comprising the space have discrete dimension, which (3) is used to define boundary elements, and (4) configurations within the topology can have connectivity (or separation) of different degrees.
To justify this discrete, closure based topological approach we use it to establish an n-dimensional Jordan surface theorem of some interest. As surfaces in digital imagery are increasingly rendered by triangulated decompositions, this kind of discrete topology can replace the highly regular pixel approach as an abstract model of n-dimensional computational geometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Computer Surveys 23(3), 345–406 (1991)
Hall, D.W., Spencer, G.L.: Elementary Topology. Wiley, New York (1955)
Herman, G.T.: Geometry of Digital Spaces. Birkäuser, Boston (1998)
Jamison, R.E., Pfaltz, J.L.: Closure Spaces that are not Uniquely Generated. In: Ordinal and Symbolic Data Analysis, OSDA 2000, Brussels, Belgium (July 2000)
Kelley, J.L.: General Topology. Van Nostrand (1955)
Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer Graphics and Connected Topologies on Finite Ordered Sets. Topology and its Applications 36, 1–17 (1990)
Kong, T.Y., Kopperman, R., Meyer, P.R.: A Topological Approach to Digital Topology. Am. Math. Monthly 98(10), 901–917 (1991)
Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan Surface Theorem for Three-dimensional Digital Spaces. Discrete and Computational Geometry 6, 155–161 (1991)
Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer, Berlin (1991)
Kuratowski, K.: Introduction to Set Theory and Topology. Pergamon Press, Oxford (1972)
Pfaltz, J.L.: Closure Lattices. Discrete Mathematics 154, 217–236 (1996)
Rosenfeld, A.: Picture processing by computer. ACM Computer Surveys 1(3) (September 1969)
Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic, New York (1982)
Rosenfeld, A., Pfaltz, J.L.: Distance Functions on Digital Pictures. Pattern Recog. 1(1), 33–61 (1968)
Smith, C., Prusinkiewicz, P., Samavati, F.: Local Specification of Surface Subdivision Algorithms. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 313–328. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kopperman, R., Pfaltz, J.L. (2004). Jordan Surfaces in Discrete Antimatroid Topologies. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-30503-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23942-0
Online ISBN: 978-3-540-30503-3
eBook Packages: Computer ScienceComputer Science (R0)