[go: up one dir, main page]

Skip to main content

Multi-prover Verification of C Programs

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3308))

Included in the following conference series:

Abstract

Our goal is the verification of C programs at the source code level using formal proof tools. Programs are specified using annotations such as pre- and post-conditions and global invariants. An original approach is presented which allows to formally prove that a function implementation satisfies its specification and is free of null pointer dereferencing and out-of-bounds array access. The method is not bound to a particular back-end theorem prover. A significant part of the ANSI C language is supported, including pointer arithmetic and possible pointer aliasing. We describe a prototype tool and give some experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Simplify decision procedure (part of ESC/Java), http://research.compaq.com/SRC/esc/simplify/

  2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTRÉE static analyzer, http://www.astree.ens.fr/

  3. Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program Construction, pp. 102–126 (2000)

    Google Scholar 

  4. Burstall, R.: Some techniques for proving correctness of programs which alter data structures. Machine Intelligence 7, 23–50, 72

    Google Scholar 

  5. CAVEAT project, http://www-drt.cea.fr/Pages/List/lse/LSL/Caveat/index.html

  6. Cook, B.: Static driver verifier, http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

  7. The Coq Proof Assistant, http://coq.inria.fr/

  8. Cousot, P.: Methods and logics for proving programs. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 841–993. North-Holland, Amsterdam (1990)

    Google Scholar 

  9. Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Filliâtre, J.-C.: The why verification tool (2002)

    Google Scholar 

  11. Filliâtre, J.-C., Marché, C.: The Caduceus tool for the verification of C programs, http://why.lri.fr/caduceus/

  12. Kaplan, D.: Some Completeness Results in the Mathematical Theory of Computation. J. ACM 15(1), 124–134 (1968)

    MATH  Google Scholar 

  13. Kernighan, B., Ritchie, D.: The C Programming Language, 2nd edn. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  14. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools supporting detailed design in Java. In: OOPSLA 2000 Companion, Minneapolis, Minnesota, pp. 105–106 (2000)

    Google Scholar 

  15. Marché, C., Paulin, C., Urbain, X.: The KRAKATOA proof tool (2002), http://krakatoa.lri.fr/

  16. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic Programming 58(1–2), 89–106 (2004), http://krakatoa.lri.fr

    Article  MATH  Google Scholar 

  17. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: Baader, F. (ed.) 19th Conference on Automated Deduction. LNCS. Springer, Heidelberg (2003)

    Google Scholar 

  18. The PVS system, http://pvs.csl.sri.com/

  19. Ranise, S., Deharbe, D.: Light-weight theorem proving for debugging and verifying units of code. In: Proc. SEFM 2003, Canberra, Australia, September 2003. IEEE Computer Society Press, Canberra (2003), http://www.loria.fr/equipes/cassis/softwares/haRVey/

    Google Scholar 

  20. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17h Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  21. Sun Microsystems. The JavaCardTM application programming interface (API), http://java.sun.com/products/javacard/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filliâtre, JC., Marché, C. (2004). Multi-prover Verification of C Programs. In: Davies, J., Schulte, W., Barnett, M. (eds) Formal Methods and Software Engineering. ICFEM 2004. Lecture Notes in Computer Science, vol 3308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30482-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30482-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23841-6

  • Online ISBN: 978-3-540-30482-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics