[go: up one dir, main page]

Skip to main content

Forecasting on Complex Datasets with Association Rules

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3213))

Abstract

Forecasting in complex fields such as financial markets or national economies is made difficult by the impact of numerous variables with unknown inter-dependencies. A forecasting approach is presented that produces forecasts on a variable based on past values for that variable and other, possibly inter-dependent variables. The approach is based on the intuition that the next value in a series depends on the last value and the last two values and the last three values and so on. Furthermore, the next value depends also on past values on other variables. No assumptions about the form of functions underpinning a dataset are made. Rather, evidence for each possible next value is collected by combining confidence values of numerous association rules. The approach has been evaluated by forecasting values in a hypothetical dataset and by forecasting the direction of the Australian stock market index with favorable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, P.G., Fildes, R.: Econometric Forecasting. In: Scott, A.J. (ed.) Principles of Forecastin: A Handbook for Researchers and Practitioners, pp. 303–362. Kluwer Academic, Boston (2001)

    Google Scholar 

  2. Ale, J., Rossi, G.: An approach to discovering temporal association rules. In: Proceedings of the 2000 ACM symposium on Applied computing, pp. 294–300. ACM Press, New York (2000)

    Chapter  Google Scholar 

  3. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 {ACM} {SIGMOD} International Conference on Management of Data, pp. 207–216 (1993)

    Google Scholar 

  4. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Yu, P.S., Chen, A.L.P. (eds.) Proceedings of the Eleventh International Conference on Data Engineering, Taipei, Taiwan, March 6-10, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

    Chapter  Google Scholar 

  5. Armstrong, J.S., Collopy, F.: Integration of Statistical Methods and Judgment for Time Series Forecasting: Principles from Empirical Research. In: Wright, G., Goodwin, P. (eds.) Forecasting with Judgment, pp. 269–293. J. Wiley & Sons, Chichester (1998)

    Google Scholar 

  6. Box, G., Jenkins, G.: Time series analysis: forecasting and control. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  7. Chatfield, C.: The Analysis of Time Series, 5th edn. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  8. Dong, G., Li, J.: Efficient Mining of Emerging patterns: discovering trends and differences. Knowledge Discovery and Data Mining, 43–52 (1999)

    Google Scholar 

  9. Han, Y., Fyfe, C.: Preprocessing Time Series using Complexity Pursuit. In: Damiani, E., Howlett, R.J., Jain, L.C., Ichakkaranje, N. (eds.) Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies KES 2002, pp. 241–244. IOS Press, Amsterdam (2002)

    Google Scholar 

  10. Harvey, N.: Improving Judgment in Forecasting. In: Scott, A.J. (ed.) Principles of Forecasting: A Handbook for Researchers and Practitioners, pp. 59–80. Kluwer Academic, Boston (2001)

    Google Scholar 

  11. Hyvarinen, A.: Complexity pursuit: separating interesting components from time-series. Neural Computing 13, 883–898 (2001)

    Article  Google Scholar 

  12. Keogh, E., Hochheiser, H., Shneiderman, B.: An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data. In: Proc. Fifth International Conference on Flexible Query Answering Systems, Copenhagen, Denmark, Univesrity of Maryland Computer Science Dept. October 27-29, 2002. LNCS (LNAI), Springer, Heidelberg (2002)

    Google Scholar 

  13. Powell, A.A., Murphy, C.W.: Inside A Modern Macro-Economic Model. Springer, Berlin, Heidelberg and New York (1997) (Second Revised and Enlarged Edition)

    Google Scholar 

  14. Ozden, B., Ramaswamy, S., Silberschatz, A.: Cyclic Association Rules. In: Proceedings of 1998 International Conference in Data Engineering ICDE 1998, Florida, pp. 412–421 (1998)

    Google Scholar 

  15. Pan, H., Tilakaratne, C., Yearwood, J.: Predicting Australian Stock Market Index Using Neural Networks Exploiting Dynamical Swings and Inter-market Influences. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 327–338. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Shintani, T., Kitsuregawa, M.: Parallel Generalized Association Rule Mining on Large Scale PC Cluster. In: Large-Scale Parallel Data Mining, pp. 145–160 (1999)

    Google Scholar 

  17. StatSoft, Inc. Electronic Statistics Textbook. Tulsa, OK: StatSoft (2004), WEB: http://www.statsoft.com/textbook/stathome.html

  18. Veloso, A., Otey, M.E., Parthasarathy, S., Meira, W.: Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp. 184–193. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Veliev, R., Rubinov, A., Stranieri, A.: The use of an Association Rules Matrix for Economic Modelling. In: Proceedings of the 6th International Conference on Neural Information Processing. ICONIP 1999, vol. 2, pp. 836–841. IEEE Press, New Jersey (1999)

    Google Scholar 

  20. Veliev, R.: Dynamical models of endogenous growth in economics, PhD thesis, University of Ballarat. Australia (2000)

    Google Scholar 

  21. Zuur, A.F., Fryer, R.J., Jolliffe, i.T., Dekker, R., Beukema, J.J.: Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14(7), 665–685 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertoli, M., Stranieri, A. (2004). Forecasting on Complex Datasets with Association Rules. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_159

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_159

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics