Abstract
Multiple classifiers have shown capability to improve performance in pattern recognition. This process can improve the overall accuracy of the system by using an optimal decision criteria. In this paper we propose an approach using a weighted benevolent fusion strategy to combine two state of the art pixel based motion classifiers. Tests on outdoor and indoor sequences confirm the efficacy of this approach. The new algorithm can successfully identify and remove shadows and highlights with improved moving-object segmentation. A process to optimise shadow removal is introduced to remove shadows and distinguish them from motion pixels. A particular advantage of our evaluation is that it is the first approach that compares foreground/background labelling with results obtained from ground truth labelling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE TPAMI 20, 226–239 (1998)
Horprasert, T., Harwood, D., Davis, L.: A statistical approach for real-time robust background subtraction and shadow detection. In: Proc. ICCV 1999, pp. 1–19 (1999)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE TPAMI 19, 780–785 (1997)
Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: Proc. UAI 1997, pp. 175–181 (1997)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using non-parametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90, 1151–1163 (2002)
Roberts, S., Husmeier, D., Rezek, I., Penny, W.: Bayesian approaches to Gaussian mixture modeling. IEEE TPAMI 20, 1133–1142 (1998)
Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE TPAMI 22, 747–757 (2000)
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proc. AVBS 2001 (2001)
McKenna, S.J., Gong, Y.R.: Tracking colour objects using adaptive mixture models. Image and Vision Computing 17, 225–231 (1999)
Mittaland, A., Huttenlocher, D.: Scene modeling for wide area surveillance and image synthesis. In: Proc. CVPR 2000, vol. 2, pp. 160–167 (2000)
Magee, D.R.: Tracking multiple vehicles using foreground, background and motion models. Image and Vision Computing 22, 143–155 (2004)
Shutler, J., Grant, M., Nixon, M., Carter, J.: On a large sequence-based human gait database. In: Proc. of RASC 2002, pp. 66–71 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Al-Mazeed, A., Nixon, M., Gunn, S. (2004). Classifiers Combination for Improved Motion Segmentation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30126-4_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-30126-4_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23240-7
Online ISBN: 978-3-540-30126-4
eBook Packages: Springer Book Archive