[go: up one dir, main page]

Skip to main content

Rules from Belief Networks: A Rough Set Approach

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3066))

Included in the following conference series:

Abstract

A new version of the Belief SEEKER software that incorporates some aspects of rough set theory is discussed in this paper. The new version is capable of generating certain belief networks (for consistent data) and possible belief networks (for inconsistent data). Then, both types of networks can be readily converted onto respective sets of production rules, which includes both certain and/or possible rules. The new version or broadly speaking-methodology, was tested in mining the melanoma database for the best descriptive attributes of skin illness. It was found, that both types of knowledge representation, can be readily used for classification of melanocytic skin lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grzymała-Busse, J.W., Hippe, Z.S.: A Search for the Best Data Mining Method to Predict Melanoma. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 538–545. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Chmielewski, M.R., Grzymała-Busse, J.W., Peterson, N.W., Than, S.: The Rule Induc-tion System LERS - A Version for Personal Computers. Foundations of Computing and Dec. Sciences 18(3-4), 181–211 (1993)

    MATH  Google Scholar 

  3. Błajdo, P., Grzymała-Busse, J.W., Hippe, Z.S., Knap, M., Marek, T., Mroczek, T., Wrzesień, M.: A suite of machine learning tools for knowledge extraction from data. In: Tadeusiewicz, R., Ligęza, A., Szymkat, M. (eds.) Computer Methods and Systems in Scientific Research, Edition of ”Oprogr. Naukowe”, Cracow, pp. 479–484 (2003) (in Polish)

    Google Scholar 

  4. Hippe, Z.S., Mroczek, T.: Melanoma classification and prediction using belief networks. In: Kurzynski, M., Puchała, E., Wozniak, M. (eds.) Computer Recognition Systems, Wrocław University of Technology Edit. Office, Wrocław, pp. 337–342 (2003)

    Google Scholar 

  5. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordercht (1991)

    MATH  Google Scholar 

  6. Cooper, G.F., Herskovits, E.: A Byesian method for the induction of probabilistic networks from data. Machine Learning (9), 309–347 (1992)

    Google Scholar 

  7. Andrews, R., Bajcar, S., Grzymała-Busse, J.W., Hippe, Z.S., Whiteley, C.: Optimization of the ABCD Formula for Melanoma Diagnosis Using C4.5, a Data Mining System. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 630–636. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Lorentzen, H., Weissman, K., Secher, L., Peterson, C.S., Larsen, F.G.: The dermatoscopic ABCD rule does not improve diagnostic accuracy of malignant melanoma. Acta Derm. Venereol 79, 469–472 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mroczek, T., Grzymała-Busse, J.W., Hippe, Z.S. (2004). Rules from Belief Networks: A Rough Set Approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics