[go: up one dir, main page]

Skip to main content

A DNA Algorithm for the Hamiltonian Path Problem Using Microfluidic Systems

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

This paper describes the design of a linear time DNA algorithm for the Hamiltonian Path Problem (HPP) suited for parallel implementation using a microfluidic system. This bioalgorithm was inspired by the algorithm contained in [16] within the tissue P systems model. The algorithm is not based on the usual brute force generate/test technique, but builds the space solution gradually. The possible solutions/paths are built step by step by exploring the graph according to a breadth-first search so that only the paths that represent permutations of the set of vertices, and which, therefore, do not have repeated vertices (a vertex is only added to a path if this vertex is not already present) are extended. This simple distributed DNA algorithm has only two operations: concatenation (append) and sequence separation (filter). The HPP is resolved autonomously by the system, without the need for external control or manipulation. In this paper, we also note other possible bioalgorithms and the relationship of the implicit model used to solve the HPP to other abstract theoretical distributed DNA computing models (test tube distributed systems, grammar systems, parallel automata).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Amos, M., Gibbons, A., Hodgson, D.: Error-resistant implementation of DNA computation. In: Proceedings of the Second Annual Meeting on DNA Based Computers, held at Princeton University, June 10-12 (1996)

    Google Scholar 

  3. Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena, S.: Algorithms for testing that DNA word designs avoid unwanted secondary structure. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 92–104. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks of evolutionary processors. In: Proc. of the 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN. LNCS, vol. 2048, pp. 621–628 (2001)

    Google Scholar 

  5. Chiu, D.T., Pezzoli, E., Wu, H., Stroock, A.D., Whitesides, G.M.: Using threedimensional microfluidic networks for solving computationally hard problems. PNAS 98(6), 2961–2966 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1994)

    MATH  Google Scholar 

  7. Csuhaj-Varju, E., Kari, L., Păun, G.: Test tube distributed systems based on splicing. Computers and AI 15(2-3), 211–232 (1996)

    MATH  Google Scholar 

  8. Csuhaj-Varju, E., Freund, R., Kari, L., Păun, G.: DNA computing based on splicing: universality results. In: Proc. First Annual Pacific Symp. on Biocomputing, Hawaii, pp. 179–190 (1996)

    Google Scholar 

  9. Dassow, J., Martín-Vide, C., Păun, G., Rodríguez-Patón, A.: Conditional concatenation. Fundamenta Informaticae 44(4), 353–372 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Freund, R., Freund, F.: Test tube systems or how to bake a DNA cake. Acta Cybernetica 12(4), 445–459 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Gehani, A., Reif, J.H.: Microflow bio-molecular computation. Biosystems 52(1-3), 197–216 (1999)

    Article  Google Scholar 

  12. Gloor, G., Kari, L., Gaasenbeek, M., Yu, S.: Towards a DNA solution to the shortest common superstring problem. In: 4th Int. Meeting on DNA-Based Computing, Baltimore, Penns (June 1998)

    Google Scholar 

  13. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biology 49, 737–759 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Head, T.: Hamiltonian Paths and Double Stranded DNA. In: Păun, G. (ed.) Computing with Bio- Molecules. Theory and Experiments, pp. 80–92. World Scientific, Singapore (1998)

    Google Scholar 

  15. Manz, A., Harrison, D.J., Verpoorte, E.M.J., Fettinger, J.C., Paulus, A., Ludi, H., Widmer, H.M.: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: “Capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258 (1992)

    Article  Google Scholar 

  16. Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theoretical Computer Science 296(2), 295–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. McCaskill, J.S.: Optically programming DNA computing in microflow reactors. Biosystems 59(2), 125–138 (2001)

    Article  Google Scholar 

  18. Morimoto, N., Arita, M., Suyama, A.: Solid phase DNA solution to the Hamiltonian path problem. In: Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, The University of Pennsylvania pp. 83–92 (June 1997)

    Google Scholar 

  19. Păun, G., Thierrin, G.: Multiset processing by means of systems of finite state transducers. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 140–157. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Selvaganapathy, P.R., Carlen, E.T., Mastrangelo, C.H.: Recent Progress in Microfluidic Devices for Nucleic Acid and Antibody Assays. Proceedings of the IEEE 91(6), 954–973 (2003)

    Article  Google Scholar 

  21. Verpoorte, E., De Rooij, N.F.: Microfluidics Meets MEMS. Proceedings of the IEEE 91(6), 930–953 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ledesma, L., Pazos, J., Rodríguez-Patón, A. (2003). A DNA Algorithm for the Hamiltonian Path Problem Using Microfluidic Systems. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics