[go: up one dir, main page]

Skip to main content

On the Contribution of Articulatory Features to Speech Synthesis

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11096))

Included in the following conference series:

  • 1486 Accesses

Abstract

There are several features that are used for the unit selection speech synthesis. Among the most used for computing a concatenation cost are energy, \(F_0\) and Mel-frequency cepstrum coefficients (MFCC) that usually give a good description of a speech signal. In our work, we focus on a usage of articulatory features. We want to determine whether they are correlated with MFCC and in that case, if they can replace MFCC or bring a new information into the process of speech synthesis. To obtain the articulatory data, we used electromagnetic articulograph AG501 and then we examined the correlation of two sequences of join costs each described by different features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Canevari, C., Badino, L., Fadiga, L.: A new Italian dataset of parallel acoustic and articulatory data. In: INTERSPEECH. ISCA (2015)

    Google Scholar 

  2. Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system using a large speech database. In: ICASSP, vol. 1, pp. 373–376. IEEE (1996)

    Google Scholar 

  3. Jůzová, M., Tihelka, D., Matoušek, J.: Designing high-coverage multi-level text corpus for non-professional-voice conservation. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS (LNAI), vol. 9811, pp. 207–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43958-7_24

    Chapter  Google Scholar 

  4. Jůzová, M., Tihelka, D., Matoušek, J., Hanzlíček, Z.: Voice conservation and TTS system for people facing total laryngectomy. In: INTERSPEECH. ISCA (2017)

    Google Scholar 

  5. Kaburagi, T., Wakamiya, K., Honda, M.: Three-dimensional electromagnetic articulography: a measurement principle. J. Acoust. Soc. Am. 118(1), 428–443 (2005)

    Article  Google Scholar 

  6. Legát, M., Matoušek, J., Tihelka, D.: A robust multi-phase pitch-mark detection algorithm. INTERSPEECH 1, 1641–1644 (2007)

    Google Scholar 

  7. Legát, M., Matoušek, J., Tihelka, D.: On the detection of pitch marks using a robust multi-phase algorithm. Speech Commun. 53(4), 552–566 (2011)

    Article  Google Scholar 

  8. Liu, Z.C., Ling, Z.H., Dai, L.R.: Articulatory-to-acoustic conversion with cascaded prediction of spectral and excitation features using neural networks. In: INTERSPEECH, pp. 1502–1506. ISCA (2016)

    Google Scholar 

  9. Matoušek, J., Legát, M.: Is unit selection aware of audible artifacts? In: SSW 2013, Proceedings of the 8th Speech Synthesis Workshop, pp. 267–271. ISCA, Barcelona (2013)

    Google Scholar 

  10. Matoušek, J., Tihelka, D.: Classification-based detection of glottal closure instants from speech signals. In: INTERSPEECH, pp. 3053–3057. ISCA (2017)

    Google Scholar 

  11. Matoušek, J., Tihelka, D., Romportl, J.: Current state of Czech text-to-speech system ARTIC. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 439–446. Springer, Heidelberg (2006). https://doi.org/10.1007/11846406_55

    Chapter  Google Scholar 

  12. Matoušek, J., Romportl, J.: Automatic pitch-synchronous phonetic segmentation. In: INTERSPEECH, pp. 1626–1629. ISCA (2008)

    Google Scholar 

  13. Richmond, K.: A multitask learning perspective on acoustic-articulatory inversion. In: INTERSPEECH, pp. 2465–2468. ISCA, August 2007

    Google Scholar 

  14. Richmond, K., Hoole, P., King, S.: Announcing the electromagnetic articulography (day 1) subset of the mngu0 articulatory corpus. In: INTERSPEECH. ISCA (2011)

    Google Scholar 

  15. Richmond, K., King, S.: Smooth talking: articulatory join costs for unit selection. In: ICASSP, pp. 5150–5154. IEEE (2016)

    Google Scholar 

  16. Stella, M., Stella, A., Sigona, F., Bernardini, P., Grimaldi, M., Fivela, B.G.: Electromagnetic articulography with AG500 and AG501. In: INTERSPEECH, pp. 1316–1320. ISCA (2013)

    Google Scholar 

  17. Tihelka, D., Hanzlíček, Z., Jůzová, M., Vít, J., Matoušek, J., Grůber, M.: Current state of text-to-speech system ARTIC: A decade of research on the field of speech technologies. In: TSD. Lecture Notes in Computer Science. Springer, Heidelberg (2018)

    Google Scholar 

  18. Tihelka, D., Kala, J., Matoušek, J.: Enhancements of Viterbi search for fast unit selection synthesis. In: INTERSPEECH, pp. 174–177. ISCA (2010)

    Google Scholar 

  19. Toda, T., Black, A., Tokuda, K.: Acoustic-to-articulatory inversion mapping with gaussian mixture model. In: INTERSPEECH. ISCA (2004)

    Google Scholar 

  20. Toutios, A., Margaritis, K.: Acoustic-to-articulatory inversion of speech: a review. In: Proceedings of the International 12th TAINN (2003)

    Google Scholar 

  21. Wrench, A.: The mocha-timit articulatory database (1999). database available at http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html

  22. Wrench, A.A., Richmond, K.: Continuous speech recognition using articulatory data. In: INTERSPEECH, pp. 145–148. ISCA (2000)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (GA CR), project No. GA16-04420S and by the grant of the University of West Bohemia, project No. SGS-2016-039. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Matura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matura, M., Jůzová, M., Matoušek, J. (2018). On the Contribution of Articulatory Features to Speech Synthesis. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99579-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99578-6

  • Online ISBN: 978-3-319-99579-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics