Abstract
There are several features that are used for the unit selection speech synthesis. Among the most used for computing a concatenation cost are energy, \(F_0\) and Mel-frequency cepstrum coefficients (MFCC) that usually give a good description of a speech signal. In our work, we focus on a usage of articulatory features. We want to determine whether they are correlated with MFCC and in that case, if they can replace MFCC or bring a new information into the process of speech synthesis. To obtain the articulatory data, we used electromagnetic articulograph AG501 and then we examined the correlation of two sequences of join costs each described by different features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Canevari, C., Badino, L., Fadiga, L.: A new Italian dataset of parallel acoustic and articulatory data. In: INTERSPEECH. ISCA (2015)
Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system using a large speech database. In: ICASSP, vol. 1, pp. 373–376. IEEE (1996)
Jůzová, M., Tihelka, D., Matoušek, J.: Designing high-coverage multi-level text corpus for non-professional-voice conservation. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS (LNAI), vol. 9811, pp. 207–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43958-7_24
Jůzová, M., Tihelka, D., Matoušek, J., Hanzlíček, Z.: Voice conservation and TTS system for people facing total laryngectomy. In: INTERSPEECH. ISCA (2017)
Kaburagi, T., Wakamiya, K., Honda, M.: Three-dimensional electromagnetic articulography: a measurement principle. J. Acoust. Soc. Am. 118(1), 428–443 (2005)
Legát, M., Matoušek, J., Tihelka, D.: A robust multi-phase pitch-mark detection algorithm. INTERSPEECH 1, 1641–1644 (2007)
Legát, M., Matoušek, J., Tihelka, D.: On the detection of pitch marks using a robust multi-phase algorithm. Speech Commun. 53(4), 552–566 (2011)
Liu, Z.C., Ling, Z.H., Dai, L.R.: Articulatory-to-acoustic conversion with cascaded prediction of spectral and excitation features using neural networks. In: INTERSPEECH, pp. 1502–1506. ISCA (2016)
Matoušek, J., Legát, M.: Is unit selection aware of audible artifacts? In: SSW 2013, Proceedings of the 8th Speech Synthesis Workshop, pp. 267–271. ISCA, Barcelona (2013)
Matoušek, J., Tihelka, D.: Classification-based detection of glottal closure instants from speech signals. In: INTERSPEECH, pp. 3053–3057. ISCA (2017)
Matoušek, J., Tihelka, D., Romportl, J.: Current state of Czech text-to-speech system ARTIC. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 439–446. Springer, Heidelberg (2006). https://doi.org/10.1007/11846406_55
Matoušek, J., Romportl, J.: Automatic pitch-synchronous phonetic segmentation. In: INTERSPEECH, pp. 1626–1629. ISCA (2008)
Richmond, K.: A multitask learning perspective on acoustic-articulatory inversion. In: INTERSPEECH, pp. 2465–2468. ISCA, August 2007
Richmond, K., Hoole, P., King, S.: Announcing the electromagnetic articulography (day 1) subset of the mngu0 articulatory corpus. In: INTERSPEECH. ISCA (2011)
Richmond, K., King, S.: Smooth talking: articulatory join costs for unit selection. In: ICASSP, pp. 5150–5154. IEEE (2016)
Stella, M., Stella, A., Sigona, F., Bernardini, P., Grimaldi, M., Fivela, B.G.: Electromagnetic articulography with AG500 and AG501. In: INTERSPEECH, pp. 1316–1320. ISCA (2013)
Tihelka, D., Hanzlíček, Z., Jůzová, M., Vít, J., Matoušek, J., Grůber, M.: Current state of text-to-speech system ARTIC: A decade of research on the field of speech technologies. In: TSD. Lecture Notes in Computer Science. Springer, Heidelberg (2018)
Tihelka, D., Kala, J., Matoušek, J.: Enhancements of Viterbi search for fast unit selection synthesis. In: INTERSPEECH, pp. 174–177. ISCA (2010)
Toda, T., Black, A., Tokuda, K.: Acoustic-to-articulatory inversion mapping with gaussian mixture model. In: INTERSPEECH. ISCA (2004)
Toutios, A., Margaritis, K.: Acoustic-to-articulatory inversion of speech: a review. In: Proceedings of the International 12th TAINN (2003)
Wrench, A.: The mocha-timit articulatory database (1999). database available at http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html
Wrench, A.A., Richmond, K.: Continuous speech recognition using articulatory data. In: INTERSPEECH, pp. 145–148. ISCA (2000)
Acknowledgments
This research was supported by the Czech Science Foundation (GA CR), project No. GA16-04420S and by the grant of the University of West Bohemia, project No. SGS-2016-039. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Matura, M., Jůzová, M., Matoušek, J. (2018). On the Contribution of Articulatory Features to Speech Synthesis. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-99579-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99578-6
Online ISBN: 978-3-319-99579-3
eBook Packages: Computer ScienceComputer Science (R0)