[go: up one dir, main page]

Skip to main content

Solving Bi-criteria Maximum Diversity Problem with Multi-objective Multi-level Algorithm

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2562 Accesses

Abstract

The multi-level paradigm is a simple and useful approach to tackle a number of combinatorial optimization problems. In this paper, we investigate a multi-objective multi-level algorithm to solve the bi-criteria maximum diversity problem. The computational results indicate that the proposed algorithm is very competitive in comparison with the original multi-objective optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More information about the benchmark instances of max-cut problem can be found on this website: http://www.stanford.edu/~yyye/yyye/Gset/.

  2. 2.

    More information about the benchmark instances of unconstrained binary quadratic programming problem can be found on this website: http://www.soften.ktu.lt/-gintaras/ubqop\_its.html.

  3. 3.

    More information about the performance assessment package can be found on this website: http://www.tik.ee.ethz.ch/pisa/assessment.html.

References

  1. Alidaee, B., Kochenberger, G.A., Ahmadian, A.: 0-1 quadratic programming approach for the optimal solution of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994)

    Article  Google Scholar 

  2. Aringhieri, R., Cordone, R.: Comparing local search metaheuristics for the maximum diversity problem. J. Oper. Res. Soc. 62(2), 266–280 (2011)

    Article  Google Scholar 

  3. Basseur, M., Liefooghe, A., Le, K., Burke, E.: The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems. J. Heuristics 18(2), 263–296 (2012)

    Article  Google Scholar 

  4. Basseur, M., Zeng, R.-Q., Hao, J.-K.: Hypervolume-based multi-objective local search. Neural Comput. Appl. 21(8), 1917–1929 (2012)

    Article  Google Scholar 

  5. Benlic, U., Hao, J.-K.: An effective multilevel tabu search approach for balanced graph partitioning. Comput. Oper. Res. 38, 1066–1075 (2011)

    Article  MathSciNet  Google Scholar 

  6. Benlic, U., Hao, J.-K.: A multilevel memetic approach for improving graph k-partitions. IEEE Trans. Evol. Comput. 15(2), 624–642 (2011)

    Article  Google Scholar 

  7. Benlic, U., Hao, J.-K.: Breakout local search for the max-cut problem. Eng. Appl. Artif. Intell. 26, 1162–1173 (2013)

    Article  Google Scholar 

  8. Brimberg, J., Mladenovic, N., Urosevic, D., Ngai, E.: Variable neighborhood search for the heaviest k-subgraph. Comput. Oper. Res. 36(11), 2885–2891 (2009)

    Article  MathSciNet  Google Scholar 

  9. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  10. Freitas, A., Guimaraes, F., Silva, R.C.P.: Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optim. Lett. 8(2), 705–714 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gallego, M., Duarte, A., Laguna, M., Marti, R.: Hybrid heuristics for the maximum diversity problem. Comput. Optim. Appl. 200(1), 36–44 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Liefooghe, A., Verel, S., Paquete, L., Hao, J.-K.: Experiments on local search for bi-objective unconstrained binary quadratic programming. In: Proceedings of the 8th International Conference on Evolutionary Multi-criterion Optimization (EMO 2015), Guimarães, Portugal, pp. 171–186 (2015)

    Google Scholar 

  14. Lü, Z., Glover, F., Hao, J.-K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)

    Article  MathSciNet  Google Scholar 

  15. Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Optim. Lett. 189(1), 371–383 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Hao, J., Glover, F., Lü, Z.: A tabu search based memetic algorithm for the maximum diversity problem. Eng. Appl. Artif. Intell. 27, 103–114 (2014)

    Article  Google Scholar 

  17. Wu, Q., Wang, Y., Lü, Z.: A tabu search based hybrid evolutionary algorithm for the max-cut problem. Appl. Soft Comput. 34, 827–837 (2015)

    Article  Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The work in this paper was supported by the Fundamental Research Funds for the Central Universities (Grant No. A0920502051722-53) and supported by the West Light Foundation of Chinese Academy of Science (Grant No: Y4C0011001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Qiang Zeng .

Editor information

Editors and Affiliations

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, LY., Zeng, RQ., Xu, HY., Wen, Y. (2018). Solving Bi-criteria Maximum Diversity Problem with Multi-objective Multi-level Algorithm. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics