[go: up one dir, main page]

Skip to main content

Finding the Most Influential Parameters of Coalitions in a PSO-CO Algorithm

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications (IPMU 2018)

Abstract

Literature reveals that optimization algorithms are generally composed of a large number of parameters that highly influence on its performance. In the early stages of the definition of a new algorithm, it is crucial to know how the uncertainty in the input parameters affects the behavior of the algorithm, influencing on its final output, so that it is possible to set up the most efficient configuration.

In this work, we are making a sensitivity analysis using the Extended Fourier Amplitude Sensitivity Test to compute the first order effects and interactions for each parameter on a recently proposed particle swarm optimization algorithm that implements a dynamic structured swarm, based on coalitions. This technique, inherited from game theory, includes four new parameters that are analyzed and tested on a well-known benchmark for continuous optimization. Results give interesting insights of the importance of one of the parameters over the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations Research/Compuer Science Interfaces. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77610-1

    Book  MATH  Google Scholar 

  2. Dorronsoro, B., Bouvry, P.: Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Trans. Evol. Comput. 15(1), 67–98 (2011)

    Article  Google Scholar 

  3. Dorronsoro, B., Bouvry, P.: Cellular genetic algorithms without additional parameters. J. Supercomputing 63(3), 816–835 (2013)

    Article  Google Scholar 

  4. Dorronsoro, B., Burguillo, J.C., Peleteiro, A., Bouvry, P.: Evolutionary algorithms based on game theory and cellular automata with coalitions. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 481–503. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_19

    Chapter  Google Scholar 

  5. Ruiz, P., Dorronsoro, B., Torre, J., Burguillo, J.: Including dynamic adaptative topology to particle swarm optimization algorithms. In: Proceedings of the 21 Congreso Int. de DirecciĂłn e IngenierĂ­a de Proyectos. Lecture Notes in Management and Industrial Engineering. Springer (2018, in press)

    Google Scholar 

  6. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  7. Clerc, M.: Particle Swarm Optimization. ISTE (International Scientific and Technical Encyclopedia) (2006)

    Google Scholar 

  8. Saltelli, A., Tarantola, S., Chan, K.P.S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)

    Article  Google Scholar 

  9. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley (2004)

    Google Scholar 

  10. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Dellino, G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems. ORSIS, vol. 59, pp. 101–122. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7547-8_5

    Chapter  Google Scholar 

  11. R Core Team: R: a language and environment for statistical computing. https://www.R-project.org. Accessed 2017

  12. Etxeberria, L., Trubiani, C., Cortellessa, V., Sagardui, G.: Performance-based selection of software and hardware features under parameter uncertainty. In: Proceedings of the 10th International ACM SIGSOFT Conference on Quality of Software Architectures, pp. 23–32 (2014)

    Google Scholar 

  13. Srinivas, C., Reddy, B.R., Ramji, K., Naveen, R.: Sensitivity analysis to determine the parameters of genetic algorithm for machine layout. Procedia Mater. Sci. 6(Icmpc), 866–876 (2014)

    Article  Google Scholar 

  14. Loubière, P., Jourdan, A., Siarry, P., Chelouah, R.: A modified sensitivity analysis method for driving a multidimensional search in the artificial bee colony algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1453–1460 (2016)

    Google Scholar 

  15. Pinel, F., Danoy, G., Bouvry, P.: Evolutionary algorithm parameter tuning with sensitivity analysis. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 204–216. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25261-7_16

    Chapter  Google Scholar 

  16. Iturriaga, S., Ruiz, P., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: A parallel multi-objective local search for AEDB protocol tuning. Proceedings of the IEEE 27th International Parallel and Distributed Processing Symposium Workshops and Ph.D. Forum, IPDPSW 2013 (Section VI), pp. 415–424 (2013)

    Google Scholar 

  17. Auder, B., Crécy, A., Iooss, B., Marqués, M.: Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations. Reliab. Eng. Syst. Safety 107, 122–131 (2012)

    Article  Google Scholar 

  18. Hamby, D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32, 135–154 (1994)

    Article  Google Scholar 

  19. Lefebvre, S., Roblin, A., Varet, S., Durand, G.: A methodological approach for statistical evaluation of aircraft infrared signature. Reliab. Eng. Syst. Safety 95, 484–493 (2010)

    Article  Google Scholar 

  20. Teodoro, G., Kurç, T., Taveira, L., Melo, A., Gao, Y., Kong, J., Saltz, J.: Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines. Bioinformatics 33(7), 1064–1072 (2017)

    Google Scholar 

  21. Li, X.: Improving multi-agent coalition formation in complex environments. Ph.D. thesis, University of Nebraska (2007)

    Google Scholar 

  22. Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Learning-based real-parameter single objective optimization. In: IEEE Congress on Evolutionary Computation, Nanyang Technological University, Singapore (2015)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Spanish MINECO and ERDF for the support provided under contracts TIN2014-60844-R (the SAVANT project) and RYC-2013-13355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz, P., Dorronsoro, B., de la Torre, J.C., Burguillo, J.C. (2018). Finding the Most Influential Parameters of Coalitions in a PSO-CO Algorithm. In: Medina, J., Ojeda-Aciego, M., Verdegay, J., Perfilieva, I., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2018. Communications in Computer and Information Science, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-91479-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91479-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91478-7

  • Online ISBN: 978-3-319-91479-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics