[go: up one dir, main page]

Skip to main content

Brute Force ECG Feature Extraction Applied on Discomfort Detection

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Abstract

This paper presents the idea of brute force feature extraction for Electrocardiography (ECG) signals applied to discomfort detection. To build an ECG Discomfort Corpus an experimental discomfort induction was conducted. 50 subjects underwent a 2 h (dis-)comfort condition in separate sessions in randomized order. ECG and subjective discomfort was recorded. 5 min ECG segments were labeled with corresponding subjective discomfort ratings, and 6365 brute force features (65 low-level descriptors, first and second order derivatives, and 47 functionals) and 11 traditional heart rate variability (HRV) parameters were extracted. Random Forest machine learning algorithm outperformed SVM and kNN approaches and achieved the best subject-dependent, 10-fold cross-validation results (\(r=.51\)). With this experiment, we are able to show that (a) brute force ECG feature sets achieved better discomfort detection than traditional HRV based ECG feature set; (b) cepstral and spectral flux based features appear to be the most promising to capture HRV phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). https://doi.org/10.1023/A:1022689900470

    Article  Google Scholar 

  2. Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: ECG signals classification using MFCC coefficients and ANN classifier. In: Proceedings of 2016 International Conference on Electrical and Information Technologies, ICEIT 2016, pp. 480–484, May 2016. https://doi.org/10.1109/EITech.2016.7519646

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A.D., Singh, R., Ukil, A., et al.: Identifying Normal, AF and other Abnormal ECG Rhythms using a cascaded binary classifier. Comput. Cardiol. 44, 2–5 (2017). https://doi.org/10.22489/CinC.2017.173-154

    Article  Google Scholar 

  5. Eyben, F.: Real-time Speech and Music Classification by Large Audio Feature Space Extraction (2016). https://doi.org/10.1007/978-3-319-27299-3

    Book  Google Scholar 

  6. Eyben, F., Wöllmer, M., and Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of ACM Multimedia, pp. 1459–1462 (2010). https://doi.org/10.1145/1873951.1874246

  7. movisens GmbH: Data analyzer sensor data analysis. Technical report (2018)

    Google Scholar 

  8. Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009). https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  9. Hidalgo Gadea, G.: Fatigue detection based on multimodal biosignal processing. Thesis. Bergische Universität Wuppertal (2017). https://doi.org/10.13140/RG.2.2.29666.63684

  10. Jang, E.H., Cho, H.Y., Kim, S.H., Eum, Y., Sohn, J.H.: Reliability of physiological signals induced by sadness and disgust. In: HUSO 2015: The First International Conference on Human and Social Analytics, pp. 35–36. IARIA (2015)

    Google Scholar 

  11. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., et al.: DEAP: a database for emotion analysis; usingphysiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  12. Koenig, J., Jarczok, M., Ellis, R., Hillecke, T., Thayer, J.: Heart rate variability and experimentally induced pain in healthy adults: a systematic review. Eur. J. Pain 18(3), 301–314 (2014). https://doi.org/10.1002/j.1532-2149.2013.00379.x

    Article  Google Scholar 

  13. Krajewski, J., Schnieder, S., Sommer, D., Batliner, A., Schuller, B.: Applying multiple classifiers and non-linear dynamics features for detection sleepiness from speech. Neurocomputing 84, 65–75 (2012). https://doi.org/10.1016/j.neucom.2011.12.021

    Article  Google Scholar 

  14. Laborde, S., Mosley, E., Thayer, J.F.: Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 1–18 (2017). https://doi.org/10.3389/fpsyg.2017.00213

    Article  Google Scholar 

  15. Michail, E., Kokonozi, A., Chouvarda, I., Maglaveras, N.: EEG and HRV markers of sleepiness and loss of control during car driving. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2566–2569 (2008). https://doi.org/10.1109/IEMBS.2008.4649724

  16. Moody, G.B., Mark, R.G., Goldberger, A.L.: PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng. Med. Biol. Mag. 20(3), 70–75 (2001). https://doi.org/10.1109/51.932728

    Article  Google Scholar 

  17. Nkurikiyeyezu, K.N., Suzuki, Y., Lopez, G.F.: Heart rate variability as a predictive biomarker of thermal comfort. J. Ambient Intell. Humaniz. Comput. (2017). https://doi.org/10.1007/s12652-017-0567-4

    Article  Google Scholar 

  18. Parent, F., Dansereau, J., Lacoste, M., Aissaoui, R.: Evaluation of the new flexible contour backrest for wheelchairs. J. Rehabil. Res. Dev. 37(3), 325–333 (2000)

    Google Scholar 

  19. Pearson, E.J.M.: Comfort and its measurement - a literature review. Disabil. Rehabil. Assistive Technol. 4(5), 301–310 (2009). https://doi.org/10.1080/17483100902980950

    Article  Google Scholar 

  20. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639

  21. Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017). https://doi.org/10.1016/j.inffus.2017.02.003

    Article  Google Scholar 

  22. Prinsloo, G.E., Rauch, H.G.L., Lambert, M.I., Muench, F., Noakes, T.D., Derman, W.E.: The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl. Cogn. Psychol. 25(5), 792–801 (2011). https://doi.org/10.1002/acp.1750

    Article  Google Scholar 

  23. Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F., Chetouani, M., et al.: The INTERSPEECH 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism. In: Proceedings of the Annual Conference of the International Speech Communication Association, pp. 148–152 (2013)

    Google Scholar 

  24. Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., Amatuni, A., Casillas, M., et al.: The computational paralinguistics challenge. In: Interspeech 2017, pp. 1–5 (2017). https://doi.org/10.21437/Interspeech.2017-43

  25. Sudarshan, V.K., Acharya, U., Oh, S.L., Adam, M., Tan, J.H., Chua, C.K., Chua, K.P., et al.: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Comput. Biol. Med. 83, 48–58 (2017). https://doi.org/10.1016/j.compbiomed.2017.01.019

    Article  Google Scholar 

  26. Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Torres, M.T., Scherer, S., et al.: AVEC 2016 - Depression, Mood, and Emotion Recognition Workshop and Challenge (2016). https://doi.org/10.1145/2988257.2988258

  27. Wachter, R., Gröschel, K., Gelbrich, G., Hamann, G.F., Kermer, P., Liman, J., Seegers, J., et al.: Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke: an open-label randomised controlled trial. Lancet Neurol. 16(4), 282–290 (2017). https://doi.org/10.1016/S1474-4422(17)30002-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Hidalgo Gadea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadea, G.H., Kreuder, A., Stahlschmidt, C., Schnieder, S., Krajewski, J. (2019). Brute Force ECG Feature Extraction Applied on Discomfort Detection. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_33

Download citation

Publish with us

Policies and ethics