Abstract
This paper presents the idea of brute force feature extraction for Electrocardiography (ECG) signals applied to discomfort detection. To build an ECG Discomfort Corpus an experimental discomfort induction was conducted. 50 subjects underwent a 2 h (dis-)comfort condition in separate sessions in randomized order. ECG and subjective discomfort was recorded. 5 min ECG segments were labeled with corresponding subjective discomfort ratings, and 6365 brute force features (65 low-level descriptors, first and second order derivatives, and 47 functionals) and 11 traditional heart rate variability (HRV) parameters were extracted. Random Forest machine learning algorithm outperformed SVM and kNN approaches and achieved the best subject-dependent, 10-fold cross-validation results (\(r=.51\)). With this experiment, we are able to show that (a) brute force ECG feature sets achieved better discomfort detection than traditional HRV based ECG feature set; (b) cepstral and spectral flux based features appear to be the most promising to capture HRV phenomena.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). https://doi.org/10.1023/A:1022689900470
Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: ECG signals classification using MFCC coefficients and ANN classifier. In: Proceedings of 2016 International Conference on Electrical and Information Technologies, ICEIT 2016, pp. 480–484, May 2016. https://doi.org/10.1109/EITech.2016.7519646
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A.D., Singh, R., Ukil, A., et al.: Identifying Normal, AF and other Abnormal ECG Rhythms using a cascaded binary classifier. Comput. Cardiol. 44, 2–5 (2017). https://doi.org/10.22489/CinC.2017.173-154
Eyben, F.: Real-time Speech and Music Classification by Large Audio Feature Space Extraction (2016). https://doi.org/10.1007/978-3-319-27299-3
Eyben, F., Wöllmer, M., and Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of ACM Multimedia, pp. 1459–1462 (2010). https://doi.org/10.1145/1873951.1874246
movisens GmbH: Data analyzer sensor data analysis. Technical report (2018)
Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009). https://doi.org/10.1145/1656274.1656278
Hidalgo Gadea, G.: Fatigue detection based on multimodal biosignal processing. Thesis. Bergische Universität Wuppertal (2017). https://doi.org/10.13140/RG.2.2.29666.63684
Jang, E.H., Cho, H.Y., Kim, S.H., Eum, Y., Sohn, J.H.: Reliability of physiological signals induced by sadness and disgust. In: HUSO 2015: The First International Conference on Human and Social Analytics, pp. 35–36. IARIA (2015)
Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., et al.: DEAP: a database for emotion analysis; usingphysiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15
Koenig, J., Jarczok, M., Ellis, R., Hillecke, T., Thayer, J.: Heart rate variability and experimentally induced pain in healthy adults: a systematic review. Eur. J. Pain 18(3), 301–314 (2014). https://doi.org/10.1002/j.1532-2149.2013.00379.x
Krajewski, J., Schnieder, S., Sommer, D., Batliner, A., Schuller, B.: Applying multiple classifiers and non-linear dynamics features for detection sleepiness from speech. Neurocomputing 84, 65–75 (2012). https://doi.org/10.1016/j.neucom.2011.12.021
Laborde, S., Mosley, E., Thayer, J.F.: Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 1–18 (2017). https://doi.org/10.3389/fpsyg.2017.00213
Michail, E., Kokonozi, A., Chouvarda, I., Maglaveras, N.: EEG and HRV markers of sleepiness and loss of control during car driving. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2566–2569 (2008). https://doi.org/10.1109/IEMBS.2008.4649724
Moody, G.B., Mark, R.G., Goldberger, A.L.: PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng. Med. Biol. Mag. 20(3), 70–75 (2001). https://doi.org/10.1109/51.932728
Nkurikiyeyezu, K.N., Suzuki, Y., Lopez, G.F.: Heart rate variability as a predictive biomarker of thermal comfort. J. Ambient Intell. Humaniz. Comput. (2017). https://doi.org/10.1007/s12652-017-0567-4
Parent, F., Dansereau, J., Lacoste, M., Aissaoui, R.: Evaluation of the new flexible contour backrest for wheelchairs. J. Rehabil. Res. Dev. 37(3), 325–333 (2000)
Pearson, E.J.M.: Comfort and its measurement - a literature review. Disabil. Rehabil. Assistive Technol. 4(5), 301–310 (2009). https://doi.org/10.1080/17483100902980950
Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017). https://doi.org/10.1016/j.inffus.2017.02.003
Prinsloo, G.E., Rauch, H.G.L., Lambert, M.I., Muench, F., Noakes, T.D., Derman, W.E.: The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl. Cogn. Psychol. 25(5), 792–801 (2011). https://doi.org/10.1002/acp.1750
Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F., Chetouani, M., et al.: The INTERSPEECH 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism. In: Proceedings of the Annual Conference of the International Speech Communication Association, pp. 148–152 (2013)
Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., Amatuni, A., Casillas, M., et al.: The computational paralinguistics challenge. In: Interspeech 2017, pp. 1–5 (2017). https://doi.org/10.21437/Interspeech.2017-43
Sudarshan, V.K., Acharya, U., Oh, S.L., Adam, M., Tan, J.H., Chua, C.K., Chua, K.P., et al.: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Comput. Biol. Med. 83, 48–58 (2017). https://doi.org/10.1016/j.compbiomed.2017.01.019
Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Torres, M.T., Scherer, S., et al.: AVEC 2016 - Depression, Mood, and Emotion Recognition Workshop and Challenge (2016). https://doi.org/10.1145/2988257.2988258
Wachter, R., Gröschel, K., Gelbrich, G., Hamann, G.F., Kermer, P., Liman, J., Seegers, J., et al.: Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke: an open-label randomised controlled trial. Lancet Neurol. 16(4), 282–290 (2017). https://doi.org/10.1016/S1474-4422(17)30002-9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gadea, G.H., Kreuder, A., Stahlschmidt, C., Schnieder, S., Krajewski, J. (2019). Brute Force ECG Feature Extraction Applied on Discomfort Detection. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-91211-0_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91210-3
Online ISBN: 978-3-319-91211-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)