[go: up one dir, main page]

Skip to main content

Cloud of Line Distribution for Arbitrary Text Detection in Scene/Video/License Plate Images

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

  • 2904 Accesses

Abstract

Detecting arbitrary oriented text in scene and license plate images is challenging due to multiple adverse factors caused by images of diversified applications. This paper proposes a novel idea of extracting Cloud of Line Distribution (COLD) for the text candidates given by Extremal regions (ER). The features extracted by COLD are fed to Random forest to label character components. The character components are grouped according to probability distribution of nearest neighbor components. This results in text line. The proposed method is demonstrated on standard database of natural scene images, namely ICDAR 2015, video images, namely ICDAR 2015 and license plate databases. Experimental results and comparative study show that the proposed method outperforms the existing methods in terms of invariant to rotations, scripts and applications.

W. Wang and Y. Wu indicates equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 155.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, Q., Doermann, D.S.: Text detection and recognition in imagery: a survey. IEEE Trans. PAMI 37(7), 1480–1500 (2015)

    Article  Google Scholar 

  2. Yin, X., Zuo, Z., Tian, S., Liu, C.: Text detection, tracking and recognition in video: a comprehensive survey. IEEE Trans. IP 25(6), 2752–2773 (2016)

    MathSciNet  Google Scholar 

  3. Weng, Y., Shivakumara, P., Lu, T., Meng, L.K., Woon, H.H.: A new multi-spectral fusion method for degraded video text frame enhancement. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015, Part I. LNCS, vol. 9314, pp. 495–506. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_48

    Chapter  Google Scholar 

  4. Roy, S., Shivakumara, P., Mondal, P., Raghavendra, R., Pal, U., Lu, T.: A new multi-modal technique for bib number/text detection in natural images. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015, Part I. LNCS, vol. 9314, pp. 483–494. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_47

    Chapter  Google Scholar 

  5. Shivakumara, P., Raghavendra, R., Qin, L., Raja, K.B., Lu, T., Pal, U.: A new multi-modal approach to bib number/text detection and recognition in marathon images. Pattern Recogn. 61, 479–491 (2017)

    Article  Google Scholar 

  6. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. IJCV 116(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  7. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architecture and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  8. Shivakumara, P., Lubani, M., Wong, K., Lu, T.: Optical flow based dynamic curved video text detection. In: Proceedings of ICIP, pp. 1668–1672 (2014)

    Google Scholar 

  9. Panahi, R., Gholampour, I.: Accurate detection and recognition of dirty vehicle plate numbers for high-speed applications. IEEE Trans. Intell. Transp. Syst. 18, 767–779 (2016)

    Article  Google Scholar 

  10. Zamberletti, A., Gallo, I., Noce, L.: Augmented text character proposals and convolutional neural networks for text spotting from scene images. In: Proceedings of ACPR, pp. 196–200 (2015)

    Google Scholar 

  11. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: Proceedings of CVPR, pp. 3538–3545 (2012)

    Google Scholar 

  12. He, S., Schomaker, L.: Writer identification using curvature-free features. Pattern Recogn. 63, 451–464 (2017)

    Article  Google Scholar 

  13. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47(6), 2116–2125 (2014)

    Article  Google Scholar 

  14. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244–256 (1972)

    Article  Google Scholar 

  15. Prasad, D.K., Leung, M.K.H., Quek, C., Cho, S.: A novel framework for making dominant point detection methods non-parametric. Image Vis. Comput. 30(11), 843–859 (2012)

    Article  Google Scholar 

  16. Wu, Y., Shivakumara, P., Wei, W., Lu, T., Pal, U.: A new ring radius transform-based thinning method for multi-oriented video characters. IJDAR 18(2), 137–151 (2015)

    Article  Google Scholar 

  17. Belongie, S.J., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24(4), 509–522 (2002)

    Article  Google Scholar 

  18. Li, Y., Jia, W., Shen, C., van den Hengel, A.: Characterness: an indicator of text in the wild. IEEE Trans. IP 23(4), 1666–1677 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Yin, X., Yin, X., Huang, K., Hao, H.: Robust text detection in natural scene images. IEEE Trans. PAMI 36(5), 970–983 (2014)

    Article  Google Scholar 

  20. Wu, Y., Shivakumara, P., Lu, T., Lim Tan, C., Blumenstein, M., Kumar, G.H.: Contour restoration of text components for recognition in video/scene images. IEEE Trans. IP 25(12), 5622–5634 (2016)

    MathSciNet  Google Scholar 

  21. Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced MSER trees. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 497–511. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_33

    Chapter  Google Scholar 

  22. Anagnostopoulos, C., Anagnostopoulos, I., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)

    Article  Google Scholar 

  23. Zhu, S., Dianat, S.A., Mestha, L.K.: End-to-end system of license plate localization and recognition. J. Electron. Imaging 24(2), 023020 (2015)

    Article  Google Scholar 

  24. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanow, A., Iwamura, M., Matas, J., Neumann, L., Chandrsekha, V.R.: ICDAR 2015 competition on robust reading. In: Proceedings of ICDAR, pp. 1156–1160 (2015)

    Google Scholar 

  25. ICDAR 2015 robust reading competition. http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1&gtv=1

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant 61672273, Grant 61272218, and Grant 61321491, by the Science Foundation for Distinguished Young Scholars of Jiangsu under Grant BK20160021, by the Science Foundation of Jiangsu under Grant BK20170892, by the Fundamental Research Funds for the Central Universities under Grant 2013/B16020141 and by the open Project of the National Key Lab for Novel Software Technology in NJU under Grant KFKT2017B05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Wu, Y., Palaiahnakote, S., Lu, T., Liu, J. (2018). Cloud of Line Distribution for Arbitrary Text Detection in Scene/Video/License Plate Images. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics