Abstract
Detecting arbitrary oriented text in scene and license plate images is challenging due to multiple adverse factors caused by images of diversified applications. This paper proposes a novel idea of extracting Cloud of Line Distribution (COLD) for the text candidates given by Extremal regions (ER). The features extracted by COLD are fed to Random forest to label character components. The character components are grouped according to probability distribution of nearest neighbor components. This results in text line. The proposed method is demonstrated on standard database of natural scene images, namely ICDAR 2015, video images, namely ICDAR 2015 and license plate databases. Experimental results and comparative study show that the proposed method outperforms the existing methods in terms of invariant to rotations, scripts and applications.
W. Wang and Y. Wu indicates equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ye, Q., Doermann, D.S.: Text detection and recognition in imagery: a survey. IEEE Trans. PAMI 37(7), 1480–1500 (2015)
Yin, X., Zuo, Z., Tian, S., Liu, C.: Text detection, tracking and recognition in video: a comprehensive survey. IEEE Trans. IP 25(6), 2752–2773 (2016)
Weng, Y., Shivakumara, P., Lu, T., Meng, L.K., Woon, H.H.: A new multi-spectral fusion method for degraded video text frame enhancement. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015, Part I. LNCS, vol. 9314, pp. 495–506. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_48
Roy, S., Shivakumara, P., Mondal, P., Raghavendra, R., Pal, U., Lu, T.: A new multi-modal technique for bib number/text detection in natural images. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015, Part I. LNCS, vol. 9314, pp. 483–494. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_47
Shivakumara, P., Raghavendra, R., Qin, L., Raja, K.B., Lu, T., Pal, U.: A new multi-modal approach to bib number/text detection and recognition in marathon images. Pattern Recogn. 61, 479–491 (2017)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. IJCV 116(1), 1–20 (2016)
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architecture and their applications. Neurocomputing 234, 11–26 (2017)
Shivakumara, P., Lubani, M., Wong, K., Lu, T.: Optical flow based dynamic curved video text detection. In: Proceedings of ICIP, pp. 1668–1672 (2014)
Panahi, R., Gholampour, I.: Accurate detection and recognition of dirty vehicle plate numbers for high-speed applications. IEEE Trans. Intell. Transp. Syst. 18, 767–779 (2016)
Zamberletti, A., Gallo, I., Noce, L.: Augmented text character proposals and convolutional neural networks for text spotting from scene images. In: Proceedings of ACPR, pp. 196–200 (2015)
Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: Proceedings of CVPR, pp. 3538–3545 (2012)
He, S., Schomaker, L.: Writer identification using curvature-free features. Pattern Recogn. 63, 451–464 (2017)
Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47(6), 2116–2125 (2014)
Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244–256 (1972)
Prasad, D.K., Leung, M.K.H., Quek, C., Cho, S.: A novel framework for making dominant point detection methods non-parametric. Image Vis. Comput. 30(11), 843–859 (2012)
Wu, Y., Shivakumara, P., Wei, W., Lu, T., Pal, U.: A new ring radius transform-based thinning method for multi-oriented video characters. IJDAR 18(2), 137–151 (2015)
Belongie, S.J., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24(4), 509–522 (2002)
Li, Y., Jia, W., Shen, C., van den Hengel, A.: Characterness: an indicator of text in the wild. IEEE Trans. IP 23(4), 1666–1677 (2014)
Yin, X., Yin, X., Huang, K., Hao, H.: Robust text detection in natural scene images. IEEE Trans. PAMI 36(5), 970–983 (2014)
Wu, Y., Shivakumara, P., Lu, T., Lim Tan, C., Blumenstein, M., Kumar, G.H.: Contour restoration of text components for recognition in video/scene images. IEEE Trans. IP 25(12), 5622–5634 (2016)
Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced MSER trees. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 497–511. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_33
Anagnostopoulos, C., Anagnostopoulos, I., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)
Zhu, S., Dianat, S.A., Mestha, L.K.: End-to-end system of license plate localization and recognition. J. Electron. Imaging 24(2), 023020 (2015)
Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanow, A., Iwamura, M., Matas, J., Neumann, L., Chandrsekha, V.R.: ICDAR 2015 competition on robust reading. In: Proceedings of ICDAR, pp. 1156–1160 (2015)
ICDAR 2015 robust reading competition. http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1>v=1
Acknowledgements
This work was supported by the Natural Science Foundation of China under Grant 61672273, Grant 61272218, and Grant 61321491, by the Science Foundation for Distinguished Young Scholars of Jiangsu under Grant BK20160021, by the Science Foundation of Jiangsu under Grant BK20170892, by the Fundamental Research Funds for the Central Universities under Grant 2013/B16020141 and by the open Project of the National Key Lab for Novel Software Technology in NJU under Grant KFKT2017B05.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wang, W., Wu, Y., Palaiahnakote, S., Lu, T., Liu, J. (2018). Cloud of Line Distribution for Arbitrary Text Detection in Scene/Video/License Plate Images. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-77380-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77379-7
Online ISBN: 978-3-319-77380-3
eBook Packages: Computer ScienceComputer Science (R0)