[go: up one dir, main page]

Skip to main content

An Ensemble System with Random Projection and Dynamic Ensemble Selection

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Abstract

In this paper, we propose using dynamic ensemble selection (DES) method on ensemble generated based on random projection. We first construct the homogeneous ensemble in which a set of base classifier is obtained by a learning algorithm on different training schemes generated by projecting the original training set to lower dimensional down spaces. We then develop a DES method on those base classifiers so that a subset of base classifiers is selected to predict label for each test sample. Here competence of a classifier is evaluated based on its prediction results on the test sample’s \( k - \) nearest neighbors obtaining from the projected data of validation set. Our proposed method, therefore, gains the benefits not only from the random projection in dimensionality reduction and diverse training schemes generation but also from DES method in choosing an appropriate subset of base classifiers for each test sample. The experiments conducted on some datasets selected from four different sources indicate that our framework is better than many state-of-the-art DES methods concerning to classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Britto, A.S., Sabourin, R., Oliveira, L.E.S.: Dynamic selection of classifiers—a comprehensive review. Pattern Recog. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  4. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mapping into Hilbert space. In: Conference in Modern Analysis and Probability, vol. 26, pp. 189–206 (1984). Contemporary Mathematics, American Mathematical Society

    Google Scholar 

  5. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: a cluster ensemble approach. In: ICML, pp. 186–193 (2003)

    Google Scholar 

  6. Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I.: META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recog. 48(5), 1925–1935 (2015)

    Article  Google Scholar 

  7. Nguyen, T.T., Nguyen, T.T.T., Pham, X.C., Liew, A.W.-C., Bezdek, J.C.: An ensemble-based online learning algorithm for streaming data. CoRR abs/1704.07938 (2017)

    Google Scholar 

  8. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: ACM SIGKDD, pp. 245–250 (2001)

    Google Scholar 

  9. Wang, Z., Yuan, X.-T., Liu, Q.: Sparse random projection for χ2 kernel linearization: algorithm and applications to image classification. Neurocomputing 151(1, 3), 327–332 (2015)

    Article  Google Scholar 

  10. Pham, X.C., Dang, M.T., Dinh, V.S., Hoang, S., Nguyen, T.T., Liew, A.W.-C.: Learning from data stream based on random projection and Hoeffding tree classifier. In: DICTA 2017 (in press)

    Google Scholar 

  11. Rathore, P., Bezdek, J.C., Erfani, S.M., Rajasegarar, S., Palaniswami, M.: Ensemble fuzzy clustering using cumulative aggregation on random projections. IEEE Trans. Fuzzy Syst. (2017, in press). https://doi.org/10.1109/tfuzz.2017.2729501

  12. Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion. 41, 195–216 (2018)

    Article  Google Scholar 

  13. Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classifier behaviour. Pattern Recogn. 34, 1879–1881 (2001)

    Article  MATH  Google Scholar 

  14. Smits, P.C.: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans. Geosci. Remote Sens. 40(4), 801–813 (2002)

    Article  Google Scholar 

  15. Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)

    Article  Google Scholar 

  16. Ko, A.H.R., Sabourin, R., Britto, A.S.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn. 41, 1735–1748 (2008)

    Article  MATH  Google Scholar 

  17. Cruz, R.M.O., Cavalcanti, G.D.C., Ren, T.I.: A method for dynamic ensemble selection based on a filter and an adaptive distance to improve the quality of the regions of competence. In: IJCNN, pp. 1126–1133 (2011)

    Google Scholar 

  18. Soares, R.G.F., Santana, A., Canuto, A.M.P., de Souto, M.C.P.: Using accuracy and diversity to select classifiers to build ensembles. In: IJCNN, pp. 1310–1316 (2006)

    Google Scholar 

  19. Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44, 2656–2668 (2011)

    Article  MATH  Google Scholar 

  20. Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13(3), 207–213 (2012)

    Article  Google Scholar 

  21. Nguyen, T.T., Nguyen, T.T.T., Pham, X.C., Liew, A.W.-C.: A novel combining classifier method based on variational inference. Pattern Recogn. 49, 198–212 (2016)

    Article  Google Scholar 

  22. Nguyen, T.T., Nguyen, M.P., Pham, X.C., Liew, A.W.-C.: A hybrid classification system with fuzzy rule and classifier ensemble. Inf. Sci. 422, 144–160 (2018)

    Article  Google Scholar 

  23. Nguyen, T.T., Liew, A.W.-C., Pham, X.C., Nguyen, M.P.: A novel 2-stage combining classifier model with stacking and genetic algorithm based feature selection. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI), vol. 8589, pp. 33–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09339-0_4

    Google Scholar 

  24. Nguyen, T.T., Liew, A.W.-C., Tran, M.T., Nguyen, M.P.: Combining multi classifiers based on a genetic algorithm – a Gaussian mixture model framework. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI), vol. 8589, pp. 56–67. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09339-0_6

    Google Scholar 

  25. Nguyen, T.T., Liew, A.W.-C., Tran, M.T., Pham, X.C., Nguyen, M.P.: A novel genetic algorithm approach for simultaneous feature and classifier selection in multi classifier system. In: CEC, pp. 1698–1705 (2014)

    Google Scholar 

  26. Nguyen, T.T., Pham, X.C., Liew, A.W.-C., Pedrycz, W.: Aggregation of classifiers: a justifiable information granularity approach. CoRR abs/1703.05411 (2017)

    Google Scholar 

  27. Nguyen, T.T., Pham, X.C., Liew, A.W.-C., Nguyen, M.P.: Optimization of ensemble classifier system based on multiple objectives genetic algorithm. In: ICMLC, vol. 1, pp. 46–51 (2014)

    Google Scholar 

  28. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)

    Google Scholar 

  29. King, R.D., Feng, C., Sutherland, A.: STATLOG: comparison of classification algorithms on large real-world problems. Appl. Artif. Intell. Int. J. 9(3), 289–333 (1995)

    Article  Google Scholar 

  30. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult. Val. Log. Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  31. Kuncheva, L.: Ludmila Kuncheva collection LKC (2004)

    Google Scholar 

  32. Garcia, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9, 2579–2596 (2008)

    MATH  Google Scholar 

  33. Nguyen, T.T., Weidlich, M., Duong, C.T., Yin, H., Nguyen, Q.V.H.: Retaining data from streams of social platforms with minimal regret. In: IJCAI, pp. 2850–2856 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, M.T., Luong, A.V., Vu, TT., Nguyen, Q.V.H., Nguyen, T.T., Stantic, B. (2018). An Ensemble System with Random Projection and Dynamic Ensemble Selection. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75417-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75416-1

  • Online ISBN: 978-3-319-75417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics