Abstract
Differential privacy has received considerable attention for privacy-preserving machine learning applications. In particular, in the cloud computing environment, data are outsourced from different users. Processing outsourced computations on the joint distribution of multi-party’s data under multiple public keys with differential privacy is a significant and difficult problem. In this paper, we propose a scheme named 1, multi-party security computation with differential privacy over outsourced data (\(\mathtt {MSCD}\)) by using a combination of public-key encryption with a double decryption algorithm (DD-PKE) and \(\epsilon \)-differential privacy to solve this problem. In our work, the cloud server adds the corresponding different statistical noises according to different queries of the data analyst, which differs from previous works in which noise is added by the data provider. In the random oracle model, our scheme is proven to achieve the goal of outsourced computation on the data sets of multiple parties without privacy leakage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Polak, A.C., Goeckel, D.L.: Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distortion. IEEE Trans. Wirel. Commun. 14(11), 5889–5899 (2015)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond \(k\)-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3 (2007)
Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science (FOCS), Toronto, Canada, pp. 162–167 (1986)
Friedman, A., Schuster, A.: Data mining with differential privacy. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–502. ACM (2010)
Rajkumar, A., Agarwal, S.: A differentially private stochastic gradient descent algorithm for multiparty classification. In: International Conference on Artificial Intelligence and Statistics, pp. 933–941 (2012)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 1–53 (2010)
Yang, B., Sato, I., Nakagawa, H.: Bayesian differential privacy on correlated data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 747–762. ACM (2015)
Liew, C.K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution. ACM Trans. Database Syst. (TODS) 10(3), 395–411 (1985)
Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope of differential privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39077-7_5
Talwar, K., Thakurta, A., Zhang, L.: Private empirical risk minimization beyond the worst case: the effect of the constraint set geometry. arXiv preprint arXiv:1411.5417 (2014)
Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054135
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Dwork, C., Rothblum, G.N.: Concentrated differential privacy. arXiv preprint arXiv:1603.01887 (2016)
Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: Proceedings of the Forty-second ACM Symposium on Theory of Computing, pp. 715–724. ACM (2010)
Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: FOCS (2010)
Dimitrakakis, C., Nelson, B., Zhang, Z., Mitrokotsa, A., Rubinstein, B.: Differential privacy for bayesian inference through posterior sampling. J. Mach. Learn. Res. 18(11), 1–39 (2017)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Kiltz, E., Malone-Lee, J.: A general construction of IND-CCA2 secure public key encryption. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 152–166. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_13
Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational reasoning for differential privacy. In: POPL (2012)
Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub, P.Y.: Differentially private Bayesian programming. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 68–79. ACM (2016)
Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9
Shi, E., Chan, H.T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Annual Network and Distributed System Security Symposium (NDSS). Internet Society (2011)
Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_8
Hua, J., Tang, A., Fang, Y., Shen, Z., Zhong, S.: Privacy-preserving utility verification of the data published by non-interactive differentially private mechanisms. IEEE Trans. Inf. Forensics Secur. 11(10), 2298–2311 (2016)
Hamm, J., Cao, P., Belkin, M.: Learning privately from multiparty data. arXiv preprint arXiv:1602.03552 (2016)
Li, J., Yan, H.Y., Liu, Z.L., Chen, X.F., Huang, X.Y., Wong, D.C.S.: Location-sharing systems with enhanced privacy in mobile online social networks. IEEE Syst. J. https://doi.org/10.1109/JSYST.2015.2415835
Foulds, J., Geumlek, J., Welling, M., Chaudhuri, K.: On the theory and practice of privacy-preserving Bayesian data analysis. arXiv preprint arXiv:1603.07294 (2016)
Li, J., Huang, X.Y., Li, J.W., Chen, X.F., Xiang, Y.: Securely outsourcing attribute-based encryption with checkability. IEEE Trans. Parallel Distrib. Syst. 25(8), 2201–2210 (2014)
Li, P., Li, J., Huang, Z.G., Li, T., Gao, C.Z., Yiu, S.M., Chen, K.: Multi-key privacy-preserving deep learning in cloud computing. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.02.006
Li, P., Li, J., Huang, Z.G., Gao, C.Z., Chen, W.B., Chen, K.: Privacy-preserving outsourced classification in cloud computing. Cluster Comput., 1–10 (2017). https://doi.org/10.1007/s10586-017-0849-9
Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)
Sweeeney, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Sweeney, L.: Achieving \(k\)-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 571–588 (2002)
Li, N., Li, T., Venkatasubramanian, S.: \(t\)-closeness: privacy beyond \(k\)-anonymity and \(l\)-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 106–115. IEEE (2007)
Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially private data release for data mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–501. ACM (2011)
Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: RescueDP: real-time spatio-temporal crowd-sourced data publishing with differential privacy. In: The 35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016, pp. 1–9. IEEE (2016)
Chen, R., Reznichenko, A., Francis, P., Gehrke, J.: Towards statistical queries over distributed private user data. In: NSDI, vol. 12, p. 13 (2012)
Chen, R., Fung, B.C.M., Mohammed, N., Desai, B.C., Wang, K.: Privacy-preserving trajectory data publishing by local suppression. Inf. Sci. 231, 83–97 (2013)
Chen, R., Xiao, Q., Zhang, Y., Xu, J.: Differentially private high-dimensional data publication via sampling-based inference. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 129–138. ACM (2015)
Bassily, R., Smith, A., Thakurta, A.: Differentially private empirical risk minimization: efficient algorithms and tight error bounds. arXiv preprint arXiv:1405.7085 (2014)
Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM (1982)
Goryczka, S., Xiong, L., Fung, B.C.M.: \(m\)-privacy for collaborative data publishing. IEEE Trans. Knowl. Data Eng. 26(10), 2520–2533 (2014)
Goryczka, S., Xiong, L.: A comprehensive comparison of multi-party secure additions with differential privacy. IEEE Trans. Dependable Secur. Comput. 14, 463–477 (2015)
Su, S., Tang, P., Cheng, X., Chen, R., Wu, Z.: Differentially private multi-party high-dimensional data publishing. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 205–216. IEEE (2016)
Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 245–248. IEEE (2013)
Youn, T.-Y., Park, Y.-H., Kim, C.H., Lim, J.: An efficient public key cryptosystem with a privacy enhanced double decryption mechanism. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 144–158. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_10
Wu, X., Kumar, A., Chaudhuri, K., Jha, S., Naughton, J.F.: Differentially private stochastic gradient descent for in-RDBMS analytics. arXiv preprint arXiv:1606.04722 (2016)
Xiao, X., Tao, Y.: \(M\)-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007)
Huang, Z., Mitra, S., Dullerud, G.: Differentially private iterative synchronous consensus. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, pp. 81–90. ACM (2012)
Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression analysis under differential privacy. VLDB 5(11), 1364–1375 (2012)
Acknowledgments
This work was supported by Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (2014A030306020), Guangzhou scholars project for universities of Guangzhou (No. 1201561613), Science and Technology Planning Project of Guangdong Province, China (2015B010129015), National Natural Science Foundation of China (Nos. 61472091, 61702126) and National Natural Science Foundation for Outstanding Youth Foundation (No. 61722203).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Li, P., Ye, H., Li, J. (2017). Multi-party Security Computation with Differential Privacy over Outsourced Data. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, KK. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science(), vol 10656. Springer, Cham. https://doi.org/10.1007/978-3-319-72389-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-72389-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72388-4
Online ISBN: 978-3-319-72389-1
eBook Packages: Computer ScienceComputer Science (R0)