[go: up one dir, main page]

Skip to main content

Typing Quantum Superpositions and Measurement

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2017)

Abstract

We propose a way to unify two approaches of non-cloning in quantum lambda-calculi. The first approach is to forbid duplicating variables, while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.

Partially funded by the STIC-AmSud Project FoQCoSS and PICT-PRH 2015-1208.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Where \(|x\rangle \) is the Dirac notation for vectors, with \(|0\rangle =\bigl ( {\begin{matrix}1\\ 0\end{matrix}}\bigr )\in \mathbb C^2\) and \(|1\rangle =\bigl ( {\begin{matrix}0\\ 1\end{matrix}}\bigr )\in \mathbb C^2\), so \(\{|0\rangle ,|1\rangle \}\) is an orthonormal basis of \(\mathbb C^2\), called here the “computational basis”.

  2. 2.

    We speak about weights and not amplitudes, since the vector may not have norm 1. The projection rule normalizes the vector while reducing.

References

  1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111(1), 3–57 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Proceedings of LICS 2005, pp. 249–258. IEEE (2005)

    Google Scholar 

  3. Arrighi, P., Díaz-Caro, A.: A system F accounting for scalars. Logical Methods in Computer Science 8(1:11) (2012)

    Google Scholar 

  4. Arrighi, P., Díaz-Caro, A., Valiron, B.: The vectorial lambda-calculus. Inf. Comput. 254(1), 105–139 (2017)

    Article  MATH  Google Scholar 

  5. Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Logical Methods in Computer Science 13(1:8) (2017)

    Google Scholar 

  6. Assaf, A., Díaz-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-by-name and the vectorial behaviour of the algebraic \(\lambda \)-calculus. Logical Methods in Computer Science 10(4:8) (2014)

    Google Scholar 

  7. Barber, A.: Dual intuitionistic linear logic. Technical report ECS-LFCS-96-347, The Laboratory for Foundations of Computer Science, University of Edinburgh (1996)

    Google Scholar 

  8. Díaz-Caro, A., Petit, B.: Linearity in the non-deterministic call-by-value setting. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 216–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9_16

    Chapter  Google Scholar 

  9. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: ACM SIGPLAN Notices (PLDI 2013), vol. 48, no. 6, pp. 333–342 (2013)

    Google Scholar 

  11. Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-order quantum computing. In: ACM SIGPLAN Notices (POPL 2014), vol. 49, no. 1, pp. 647–658 (2014)

    Google Scholar 

  12. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge University Press, Cambridge (2009). Chapter 9

    Google Scholar 

  14. Zorzi, M.: On quantum lambda calculi: a foundational perspective. Math. Struct. Comput. Sci. 26(7), 1107–1195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Eduardo Bonelli, Luca Paolini, Simona Ronchi della Rocca and Luca Roversi for interesting comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Díaz-Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Caro, A., Dowek, G. (2017). Typing Quantum Superpositions and Measurement. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics