[go: up one dir, main page]

Skip to main content

Motif Iteration Model for Network Representation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

  • 4676 Accesses

Abstract

Social media mining has become one of the most popular research areas in Big Data with the explosion of social networking information from Facebook, Twitter, LinkedIn, Weibo and so on. Understanding and representing the structure of a social network is a key in social media mining. In this paper, we propose the Motif Iteration Model (MIM) to represent the structure of a social network. As the name suggested, the new model is based on iteration of basic network motifs. In order to better show the properties of the model, a heuristic and greedy algorithm called Vertex Reordering and Arranging (VRA) is proposed by studying the adjacency matrix of the three-vertex undirected network motifs. The algorithm is for mapping from the adjacency matrix of a network to a binary image, it shows a new perspective of network structure visualization. In summary, this model provides a useful approach towards building link between images and networks and offers a new way of representing the structure of a social network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  2. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)

    Article  Google Scholar 

  3. Alon, U.: Introduction to Systems Biology: Design Principles of Biological Circuits. CRC, Boca Raton (2006)

    MATH  Google Scholar 

  4. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic, Burlington (2006)

    Google Scholar 

  5. Levine, M., Davidson, E.H.: Gene regulatory networks for development. Proc. Natl. Acad. Sci. U.S.A. 102(14), 4936 (2005)

    Article  Google Scholar 

  6. Motallebi, S., Aliakbary, S., Habibi, J.: Generative model selection using a scalable and size-independent complex network classifier. Chaos Interdiscip. J. Nonlinear Sci. 23(4), 043127 (2014)

    Article  MathSciNet  Google Scholar 

  7. Lv, L., Pan, L., Zhou, T., Zhang, Y.-C., Stanley, H.E.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. U.S.A. 112(8), 2325–2330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdos, P., Renyi, A.: On random graphs. Publ. Math. 6(4), 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Yu, Y., Wang, X., Liu, C.: Synchronization in a nearest-neighbor coupled network and motif dynamics. J. Ningxia Univ. 31(1), 44–48 (2010)

    Google Scholar 

  10. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268 (2001)

    Article  MATH  Google Scholar 

  11. Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks using graphlets. Internet Math. 8, 338–363 (2012)

    Article  MathSciNet  Google Scholar 

  13. Liakos, P., Papakonstantinopoulou, K., Sioutis, M.: On the effect of locality in compressing social networks. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 650–655. Springer, Cham (2014). doi:10.1007/978-3-319-06028-6_71

    Chapter  Google Scholar 

  14. Boldi, P., Marco, R., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. Comput. Sci. 133(6), 587–596 (2011)

    Google Scholar 

  15. Milo, R., Shenorr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  16. Börner, K., Sanyal, S., Vespignani, A.: Network science. Annu. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)

    Article  Google Scholar 

  17. Sermanet, P., Chintala, S., Lecun, Y.: Convolutional neural networks applied to house numbers digit classification. In: CVPR, pp. 3288–3291 (2012)

    Google Scholar 

  18. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China Nos. 61401012 and 61305047.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengchang Qin or Tao Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, L., Qin, Z., Wan, T. (2017). Motif Iteration Model for Network Representation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics