Abstract
Social media mining has become one of the most popular research areas in Big Data with the explosion of social networking information from Facebook, Twitter, LinkedIn, Weibo and so on. Understanding and representing the structure of a social network is a key in social media mining. In this paper, we propose the Motif Iteration Model (MIM) to represent the structure of a social network. As the name suggested, the new model is based on iteration of basic network motifs. In order to better show the properties of the model, a heuristic and greedy algorithm called Vertex Reordering and Arranging (VRA) is proposed by studying the adjacency matrix of the three-vertex undirected network motifs. The algorithm is for mapping from the adjacency matrix of a network to a binary image, it shows a new perspective of network structure visualization. In summary, this model provides a useful approach towards building link between images and networks and offers a new way of representing the structure of a social network.
Similar content being viewed by others
References
Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)
Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)
Alon, U.: Introduction to Systems Biology: Design Principles of Biological Circuits. CRC, Boca Raton (2006)
Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic, Burlington (2006)
Levine, M., Davidson, E.H.: Gene regulatory networks for development. Proc. Natl. Acad. Sci. U.S.A. 102(14), 4936 (2005)
Motallebi, S., Aliakbary, S., Habibi, J.: Generative model selection using a scalable and size-independent complex network classifier. Chaos Interdiscip. J. Nonlinear Sci. 23(4), 043127 (2014)
Lv, L., Pan, L., Zhou, T., Zhang, Y.-C., Stanley, H.E.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. U.S.A. 112(8), 2325–2330 (2015)
Erdos, P., Renyi, A.: On random graphs. Publ. Math. 6(4), 290–297 (1959)
Yu, Y., Wang, X., Liu, C.: Synchronization in a nearest-neighbor coupled network and motif dynamics. J. Ningxia Univ. 31(1), 44–48 (2010)
Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268 (2001)
Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)
Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks using graphlets. Internet Math. 8, 338–363 (2012)
Liakos, P., Papakonstantinopoulou, K., Sioutis, M.: On the effect of locality in compressing social networks. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 650–655. Springer, Cham (2014). doi:10.1007/978-3-319-06028-6_71
Boldi, P., Marco, R., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. Comput. Sci. 133(6), 587–596 (2011)
Milo, R., Shenorr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)
Börner, K., Sanyal, S., Vespignani, A.: Network science. Annu. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)
Sermanet, P., Chintala, S., Lecun, Y.: Convolutional neural networks applied to house numbers digit classification. In: CVPR, pp. 3288–3291 (2012)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Acknowledgments
This work is supported by the National Science Foundation of China Nos. 61401012 and 61305047.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lv, L., Qin, Z., Wan, T. (2017). Motif Iteration Model for Network Representation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-70139-4_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70138-7
Online ISBN: 978-3-319-70139-4
eBook Packages: Computer ScienceComputer Science (R0)