[go: up one dir, main page]

Skip to main content

A Radiomics Approach for Automated Identification of Aggressive Tumors on Combined PET and Multi-parametric MRI

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10639))

Included in the following conference series:

Abstract

We present a computerized image-based method to automatically identify aggressive tumors on combined positron emission tomography and magnetic resonance imaging (PET-MRI) using radiomics texture features from both PET and multi-parametric MRI (MP-MRI). The work aims at investigating the potential use of new composite textures from PET-MRI for the assessment of different biological properties present in cancer and non-cancer regions, and eventually for early detection of malignant tumors in real clinical practice. Towards this goal, a large number of radiomics features are extracted to characterize the intratumoural heterogeneity and microarchitectural morphologic differences within tumors. These image attributes are valuable for determining tumor aggressiveness. The radiomics model was evaluated on three types of cancers (pancreas, gallbladder, and liver). Compared to single image modality (PET or MRI), the fused PET and MP-MRI achieved the best classification performance in differentiating cancer and non-cancer regions with the area of under curve (AUC) of 0.87 for pancreas cancer, 0.89 for gallbladder cancer, and 0.82 for liver cancer. The results indicated that PET-MRI based imaging biomarkers could be useful in identifying aggressive tumors.

T. Wan and B. Cui are the co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bashir, U., Mallia, A., Stirling, J., Joemon, J., MacKewn, J., Charles-Edwards, G., Goh, V., Cook, G.: PET/MRI in oncological imaging: state of the art. Diagnostics 21(5), 333–357 (2015)

    Article  Google Scholar 

  2. Chen, S., He, H., Garcia, E.: RAMOBoost: ranked minority oversampling in boosting. IEEE Trans. Neural Networks 21(10), 1624–1642 (2010)

    Article  Google Scholar 

  3. Edwards, B., Brown, M., Wingo, P., Howe, H., Ward, E., Ries, L., Schrag, D., Jamison, P., Jemal, A., Wu, X., Friedman, C., Harlan, L., Warren, J., Anderson, R., Pickle, L.: Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J. Natl. Cancer Inst. 97(19), 1407–1427 (2005)

    Article  Google Scholar 

  4. Ginsburg, S., Lee, G., Ali, S., Madabhushi, A.: Feature importance in nonlinear embeddings (FINE): applications in digital pathology. IEEE Trans. Med. Imaging 35(1), 76–88 (2016)

    Article  Google Scholar 

  5. Haralick, R.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  6. Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R., Granton, P., Zegers, C., Gillies, R., Boellard, R., Dekker, A., Aerts, H.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  7. Li, C., Xu, C., Gui, C., Fox, M.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19, 3243–3254 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, L., Rusu, M., Viswanath, S., Penzias, G., Pahwa, S., Gollamudi, J., Madabhushi, A.: Multi-modality registration via multi-scale textural and spectral embedding representations. In: Proceedings of SPIE, p. 978446-1 (2016)

    Google Scholar 

  9. Lian, C., Ruan, S., Denaux, T., Jardin, F., Vera, P.: Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 32, 257–267 (2016)

    Article  Google Scholar 

  10. Prasanna, P., Tiwari, P., Madabhushi, A.: Co-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptor. Sci. Rep. 22(6), 37241 (2016)

    Article  Google Scholar 

  11. Qiao, X., Zhang, L.: Distance-weighted support vector machine. Stat. Interface 8, 331–345 (2015)

    Article  MathSciNet  Google Scholar 

  12. Riola-Parada, C., Garcia-Canamaque, L., Perez-Duenas, V., Garcerant-Tafur, M., Carreras-Delgado, J.: Simultaneous PET/MRI vs PET/CT in oncology. A systematic review. Rev. Esp. Med. Nucl. Imagen. Mol. 35(5), 306–312 (2016)

    Google Scholar 

  13. Siegel, R., Miller, K., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 66(1), 7–30 (2016)

    Article  Google Scholar 

  14. Tiwari, P., Prasanna, P., Wolansky, L., Pinho, M., Cohen, M., Nayate, A., Gupta, A., Singh, G., Hatanpaa, K., Sloan, A., Rogers, L., Madabhushi, A.: Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. AJNR Am. J. Neuroradiol. 37(12), 2231–2236 (2016)

    Article  Google Scholar 

  15. Vallières, M., Freeman, C., Skamene, S., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60(14), 5471–5496 (2015)

    Article  Google Scholar 

  16. Wan, T., Bloch, B., Plecha, D., Thompson, C., Gilmore, H., Jaffe, C., Harris, L., Madabhushi, A.: A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting Oncotypedx risk scores. Sci. Rep. 18(6), 21394 (2016)

    Article  Google Scholar 

  17. Wan, T., Madabhushi, A., Phinikaridou, A., Hamilton, J.A., Hua, N., Pham, T., Danagoulian, J., Kleiman, R., Buckler, A.: Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Med. Phys. 41(4), 042303 (2014)

    Article  Google Scholar 

  18. Zhao, B., Tan, Y., Tsai, W., Qi, J., Xie, C., Lu, L., Schwartz, L.: Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. Rep. 24(6), 23428 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under award No. 61401012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wan , Zengchang Qin or Jie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wan, T., Cui, B., Wang, Y., Qin, Z., Lu, J. (2017). A Radiomics Approach for Automated Identification of Aggressive Tumors on Combined PET and Multi-parametric MRI. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10639. Springer, Cham. https://doi.org/10.1007/978-3-319-70136-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70136-3_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70135-6

  • Online ISBN: 978-3-319-70136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics