[go: up one dir, main page]

Skip to main content

Coarse and Fine: A New Method for Gender Classification in the Wild

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10568))

Included in the following conference series:

  • 3766 Accesses

Abstract

As one of the most important soft biometrics, gender has substantial applications in various areas such as demography and human-computer interaction. Successful gender estimation of face images taken under real-world also contributes to improving the face identification results in the wild. However, most existing gender classification methods estimate gender under well controlled environment, which limits its implementation in real-world applications. In this paper, we propose a new network architecture to combine the coarse appearance features with delicate facial features for gender estimation task. We call this method “coarse and fine” to give a harsh description of the gender estimation process. Trained on the large scale uncontrolled CelebA dataset without any alignment, the proposed network tries to learn how to estimate gender of real-world face images. Cross-database experiments on LFWA and CASIA-WebFace dataset show the superiority of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gutta, S., Wechsler, H.: Gender and ethnic classification of human faces using hybrid classifiers. In: Proceedings of the International Joint Conference on Neural Networks, pp. 4084–4089 (1999)

    Google Scholar 

  2. Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images. In: Proceedings of the IEEE International Conference on Multimedia and Expo, p. 4 (2005)

    Google Scholar 

  3. Baluja, S., Rowley, H.: Boosting sex identification performance. Int. J. Comput. Vis. 71(1), 111–119 (2007)

    Article  Google Scholar 

  4. Benabdelkader, C., Griffin, P.: A local region-based approach to gender classification from face images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 52 (2005)

    Google Scholar 

  5. Toews, M., Arbel, T.: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567–1581 (2009)

    Article  Google Scholar 

  6. Ullah, I., Hussain, M., Muhammad, G., Aboalsamh, H.: Gender recognition from face images with local WLD descriptor. In: Proceedings of the International Conference on Systems, Signals and Image Processing, pp. 417–420 (2013)

    Google Scholar 

  7. Perez, C., Tapia, J., Estvez, P., Held, C.: Gender classification from face images using mutual information and feature fusion. Int. J. Optomechatronics 6(1), 92–119 (2012)

    Article  Google Scholar 

  8. O’Toole, A., Vetter, T., Troje, N., Blthoff, H.: Sex classification is better with three-dimensional head structure than with image intensity information. Perception 26(1), 75–84 (1997)

    Article  Google Scholar 

  9. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  10. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recogn. Lett. 33(4), 431–437 (2012)

    Article  Google Scholar 

  11. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts (2007)

    Google Scholar 

  12. Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)

    Article  Google Scholar 

  13. Reid, D.A., Samangooei, S., Chen, C., Nixon, M.S., Ross, A.: Soft biometrics for surveillance: an overview. Mach. Learn.: Theory Appl. 327–352 (2013). Elsevier

    Google Scholar 

  14. Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: a neural network identifies sex from human faces. NIPS 1, 2 (1990)

    Google Scholar 

  15. Poggio, B., Brunelli, R., Poggio, T.: HyberBF networks for gender classification. In: NIPS, vol. 2 (1990)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Verma, A., Vig, L.: Using convolutional neural networks to discover cogntively validated features for gender classification. In: Proceedings of the International Conference on Soft Computing and Machine Intelligence, pp. 33–37 (2014)

    Google Scholar 

  18. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)

    Article  Google Scholar 

  19. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–42 (2015)

    Google Scholar 

  20. Mansanet, J., Albiol, A., Paredes, R.: Local deep neural networks for gender recognition. Pattern Recogn. Lett. 70, 80–86 (2016)

    Article  Google Scholar 

  21. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  22. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  23. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Research and Development Program of China (2017YFB0802303, 2016YFC0801100) and the National Key Scientific Instrument and Equipment Development Projects of China (2013YQ49087904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jiang, Q., Shao, L., Liu, Z., Zhao, Q. (2017). Coarse and Fine: A New Method for Gender Classification in the Wild. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69923-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69922-6

  • Online ISBN: 978-3-319-69923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics