[go: up one dir, main page]

Skip to main content

Extension Complexity of Stable Set Polytopes of Bipartite Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

The extension complexity \(\mathsf {xc}(P)\) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let \({{\mathrm{\mathsf {STAB}}}}(G)\) be the convex hull of the stable sets of G. It is easy to see that \(n \leqslant \mathsf {xc}({{\mathrm{\mathsf {STAB}}}}(G)) \leqslant n+m\). We improve both of these bounds. For the upper bound, we show that \(\mathsf {xc}({{\mathrm{\mathsf {STAB}}}}(G))\) is \(O(\frac{n^2}{\log n})\), which is an improvement when G has quadratically many edges. For the lower bound, we prove that \(\mathsf {xc}({{\mathrm{\mathsf {STAB}}}}(G))\) is \(\varOmega (n \log n)\) when G is the incidence graph of a finite projective plane. We also provide examples of 3-regular bipartite graphs G such that the edge vs stable set matrix of G has a fooling set of size |E(G)|.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. Ann. Oper. Res. 204, 97–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming. Graduate Texts in Mathematics, vol. 271. Springer, Cham (2014)

    MATH  Google Scholar 

  3. Coxeter, H.S.M.: Projective Geometry, Revised reprint of the 2 edn. Springer, New York (1994)

    MATH  Google Scholar 

  4. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discrete Math. 313(1), 67–83 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., Wolf, R.D.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62(2), 17–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 565–572. IEEE (2016)

    Google Scholar 

  9. Kaibel, V.: Extended formulations in combinatorial optimization. arXiv preprint arXiv:1104.1023 (2011)

  10. Khoshkhah, K., Theis, D.O.: Fooling sets and the spanning tree polytope. arXiv preprint arXiv:1701.00350 (2017)

  11. Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rothvoß, T.: The matching polytope has exponential extension complexity. In: STOC 2014–Proceedings of 2014 ACM Symposium on Theory of Computing, pp. 263–272. ACM, New York (2014)

    Google Scholar 

  13. Roughgarden, T.: Communication complexity (for algorithm designers). arXiv preprint arXiv:1509.06257 (2015)

  14. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. Tuza, Z.: Covering of graphs by complete bipartite subgraphs: complexity of 0-1 matrices. Combinatorica 4(1), 111–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wong, R.T.: Integer programming formulations of the traveling salesman problem. In: Proceedings of 1980 IEEE International Conference on Circuits and Computers, pp. 149–152 (1980)

    Google Scholar 

  17. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. System Sci. 43(3), 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank Monique Laurent and Ronald de Wolf for bringing the topic of this paper to our attention. We also acknowledge support from ERC grant FOREFRONT (grant agreement no. 615640) funded by the European Research Council under the EU’s 7th Framework Programme (FP7/2007-2013) and Ambizione grant PZ00P2 154779 Tight formulations of 0–1 problems funded by the Swiss National Science Foundation. Finally, we also thank the five anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aprile, M., Faenza, Y., Fiorini, S., Huynh, T., Macchia, M. (2017). Extension Complexity of Stable Set Polytopes of Bipartite Graphs. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics