Abstract
While user-centric privacy settings are important to protect the privacy of users, often users have difficulty changing the default ones. This is partly due to lack of awareness and partly attributed to the tediousness and complexities involved in understanding and changing privacy settings. In previous works, we proposed a mechanism for helping users set their default privacy settings at the time of registration to Internet services, by providing personalised privacy-by-default settings. This paper evolves and evaluates our privacy setting prediction engine, by taking into consideration users’ settings preferences and personal attributes (e.g. gender, age, and type of mobile phone). Results show that while models built on users’ privacy preferences have improved the accuracy of our scheme; grouping users by attributes does not make an impact in the accuracy. As a result, services potentially using our prediction engine, could minimize the collection of user attributes and based the prediction only on users’ privacy preferences.
Similar content being viewed by others
References
Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Secur. Priv. 3(1), 26–33 (2005)
Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enterprise privacy policies. In: Proceedings of the 2004 ACM symposium on Applied computing, SAC 2004, pp. 375–382 (2004)
Bekara, K., Ben Mustapha, Y., Laurent, M.: XPACML extensible privacy access control markup langua. In: 2010 Second International Conference on Communications and Networking (ComNet), pp. 1–5 (2010)
Bell, G.: A personal digital store. Commun. ACM 44(1), 86–91 (2001). http://doi.acm.org/10.1145/357489.357513
Berendt, B., Günther, O., Spiekermann, S.: Privacy in e-commerce: Stated preferences vs. actual behavior. Commun. ACM 48(4), 101–106 (2005)
Buffett, S., Fleming, M.W.: Applying a preference modeling structure to user privacy. In: Proceedings of the 1st International Workshop on Sustaining Privacy in Autonomous Collaborative Environments (2007)
Cranor, L.: P3P: making privacy policies more useful. IEEE Secur. Priv. 1(6), 50–55 (2003)
Dehghantanha, A., Udzir, N., Mahmod, R.: Towards a pervasive formal privacy language. In: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1085–1091 (2010)
Fang, L., Kim, H., LeFevre, K., Tami, A.: A privacy recommendation wizard for users of social networking sites. In: Proceedings of the 17th ACM conference on Computer and communications security, pp. 630–632. ACM (2010)
Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World wide web, pp. 351–360. ACM (2010)
Guo, S., Chen, K.: Mining privacy settings to find optimal privacy-utility tradeoffs for social network services. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Confernece on Social Computing (SocialCom), pp. 656–665 (2012)
Jensen, C., Potts, C., Jensen, C.: Privacy practices of internet users: self-reports versus observed behavior. Int. J. Hum.-Comput. Stud. 63(1–2), 203–227 (2005)
Kelley, P.G., Hankes Drielsma, P., Sadeh, N., Cranor, L.F.: User-controllable learning of security and privacy policies. In: Proceedings of the 1st ACM workshop on Workshop on AISec, AISec 2008, pp. 11–18 (2008)
Kiyomoto, S., Nakamura, T., Takasaki, H., Watanabe, R., Miyake, Y.: PPM: privacy policy manager for personalized services. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 377–392. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40588-4_26
Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an online social network. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 340–345 (2012)
Mugan, J., Sharma, T., Sadeh, N.: Understandable learning of privacy preferences through default personas and suggestions (2011)
Nakamura, T., Kiyomoto, S., Tesfay, W.B., Serna, J.: Personalised privacy by default preferences - experiment and analysis. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy, ICISSP, vol. 1, pp. 53–62 (2016)
Pollach, I.: What’s wrong with online privacy policies? Commun. ACM 50(9), 103–108 (2007)
Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009)
Solove, D.J.: Privacy self-management and the consent paradox. In: Harvard Law Rev. 126 (2013)
Tondel, I., Nyre, A., Bernsmed, K.: Learning privacy preferences. In: 2011 Sixth International Conference on Availability, Reliability and Security (ARES), pp. 621–626 (2011)
Tøndel, I.A., Nyre, Å.A.: Towards a similarity metric for comparing machine-readable privacy policies. In: Camenisch, J., Kesdogan, D. (eds.) iNetSec 2011. LNCS, vol. 7039, pp. 89–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27585-2_8
W3C: The platform for privacy preferences 1.0 (P3P1.0) specificati. In: Platform for Privacy Preferences (P3P) Project (2002)
Acknowledgment
This research work has been supported by JST CREST Grant Number JPMJCR1404, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nakamura, T., Tesfay, W.B., Kiyomoto, S., Serna, J. (2017). Default Privacy Setting Prediction by Grouping User’s Attributes and Settings Preferences. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2017 2017. Lecture Notes in Computer Science(), vol 10436. Springer, Cham. https://doi.org/10.1007/978-3-319-67816-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-67816-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67815-3
Online ISBN: 978-3-319-67816-0
eBook Packages: Computer ScienceComputer Science (R0)