[go: up one dir, main page]

Skip to main content

Towards Job Stress Recognition Based on Behavior and Physiological Features

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10586))

Abstract

Nowadays, job stress is very common and it has a high cost in terms of employees’ health, absenteeism and lower performance. It is so big the impact of this psychological disease that the WHO recognizes it as one of the great epidemics of modern life. This paper presents a job stress predictive model from monitoring employees’ behavior and physiological features. The monitoring was carried out through their job computer and a wrist-worn sensor. The proposed model obtained an accuracy of 94%, a precision of 0.943, a recall and a F-Measure of 0.914. Also, the results obtained of the evaluation of the selected model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leka, S., Griffiths, A., Cox, T.: Work Organization and stress: systematic problem approaches for employers, managers and trade union representatives, Paris, France (2004)

    Google Scholar 

  2. Aquino Lopes, R., Cardoso, A., Afonso Lamounier, E., Jose Lopes, E., Notargiacomo Mustaro, P.: Digital games for coping with occupational stress. IEEE Latin Am. Trans. 13(12), 3907–3912 (2015)

    Article  Google Scholar 

  3. World Health Organization: Sensibilizando sobre el Estrés Laboral en los Países en Desarrollo

    Google Scholar 

  4. Blaug, R., Kenyon, A., Lekhi, R.: Stress at Work: A Report Prepared for The Work Foundation’s Principal Partners. The Work Foundation, London (2007)

    Google Scholar 

  5. Plarre, K., Raij, A., Hossain, S.M., Ali, A.A., Nakajima, M., Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A., Wittmers, L.E.: Continuous inference of psychological stress from sensory measurements collected in the natural environment. In: Information Processing in Sensor Networks (IPSN), pp. 97–108 (2011)

    Google Scholar 

  6. Bakker, J., Pechenizkiy, M., Sidorova, N.: What’s your current stress level? Detection of stress patterns from gsr sensor data. Paper presented at IEEE 11th International Conference on Data Mining Working, no. 1, pp. 573–580 (2011)

    Google Scholar 

  7. Raij, A., Blitz, P., Ali, A.A., Fisk, S., French, B., Mitra, S., Nakajima, M., Nguyen, M.H., Plarre, K., Rahman, M., Shah, S., Shi, Y., Stohs, N., Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A.: mStress: supporting continuous collection of objective and subjective measures of psychosocial stress on mobile devices. Technical report No. CS-10-004, University of Memphis (2010)

    Google Scholar 

  8. Hernandez, J., Paredes, P., Roseway, A., Czerwinski, M.: Under pressure: sensing stress of computer users. In: ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 51–60 (2014)

    Google Scholar 

  9. Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 671–676 (2013)

    Google Scholar 

  10. Hernandez, J., Morris, Rob R., Picard, Rosalind W.: Call center stress recognition with person-specific models. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 125–134. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24600-5_16

    Chapter  Google Scholar 

  11. Majoe, D., Bonhof, P., Kaegi-trachsel, T., Gutknecht, J., Widmer, L.: Stress and sleep quality estimation from a smart wearable sensor. In: Pervasive Computing and Applications (ICPCA), pp. 14–19 (2010)

    Google Scholar 

  12. Hernandez, J., Benavides, X., Maes, P., McDuff, D., Amores, J., Picard, R.W.: AutoEmotive: bringing empathy to the driving experience to manage stress. In: Designing Interactive Systems, pp. 53–56 (2014)

    Google Scholar 

  13. Sharma, N., Gedeon, T.: Modeling stress recognition in typical virtual environments. In: Proceedings of the ICTs for improving Patients Rehabilitation Research Techniques, pp. 17–24 (2013)

    Google Scholar 

  14. Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., Pentland, A.S.: Pervasive stress recognition for sustainable living, pp. 345–350 (2014)

    Google Scholar 

  15. Maxhuni, A., Hernandez-Leal, P., Sucar, L.E., Osmani, V., Morales, E.F., Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016)

    Article  Google Scholar 

  16. Ferdous, R., Osmani, V., Beltran, J., Mayora, O.: Investigating correlation between verbal interactions and perceived stress. In: Engineering in Medicine and Biology Society (EMBS) (2015)

    Google Scholar 

  17. Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Heal. Informatics 20(4), 1053–1060 (2015)

    Article  Google Scholar 

  18. Maxhuni, A., Hernandez-leal, P., Morales, E., Enrique, L., Osmani, V., Mayora, O.: Using Intermediate Models and Knowledge Learning to Improve Stress Prediction, vol. 179. Springer, New York (2017)

    Google Scholar 

  19. Karunaratne, I., Atukorale, A.S., Perera, H.: The relationship between psychological distress and human computer interaction parameters: linear or non-linear? Lect. Notes Electr. Eng. 312, 471–478 (2015)

    Article  Google Scholar 

  20. Pimenta, A., Carneiro, D., Neves, J., Novais, P.: A neural network to classify fatigue from human-computer interaction. Neurocomputing 172, 413–426 (2016)

    Article  Google Scholar 

  21. Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A real-time human stress monitoring system using dynamic bayesian network. Paper presented at 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 3, p. 70 (2005)

    Google Scholar 

  22. Khan, I.A., Brinkman, W.P., Hierons, R.: Towards estimating computer users’ mood from interaction behaviour with keyboard and mouse. Front. Comput. Sci. 7(6), 943–954 (2013)

    Article  MathSciNet  Google Scholar 

  23. Karunaratne, I., Atukorale, A.S., Perera, H.: Surveillance of human-computer interactions: a way forward to detection of users’ psychological distress. In: Humanities, Science and Engineering (CHUSER), pp. 491–496 (2011)

    Google Scholar 

  24. Arnrich, B., Setz, C., La Marca, R., Troster, G., Ehlert, U.: What does your chair know about your stress level? IEEE Trans. Inf. Technol. Biomed. 14(2), 207–214 (2010)

    Article  Google Scholar 

  25. Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Exp. Syst. Appl. 39(18), 13376–13389 (2012)

    Article  Google Scholar 

  26. Han, J., Kamber, M., Pei, J.: Data Mining. Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2012)

    MATH  Google Scholar 

  27. Moore, D.S.: Estadística aplicada básica. Antoni Bosch editor (2005)

    Google Scholar 

  28. Hall, M.A.: Correlation-Based Feature Selection for Machine Learning. The University of Waikato, Hamilton (1999)

    Google Scholar 

  29. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  30. Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Burlington, US (2011)

    Google Scholar 

  31. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  32. More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. Computing Research Repository (CoRR). arXiv:1608.06048 (2016)

  33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. In: SIGKDD Explorations, vol. 11, no. 1 (2009)

    Google Scholar 

  34. Loyola, O., Medina, M.A., García, M.: Inducing decision trees based on a cluster quality index. IEEE Latin Am. Trans. 13(4), 1141–1147 (2015)

    Article  Google Scholar 

  35. Univaso, P., Ale, J.M., Gurlekian, J.A.: Data mining applied to forensic speaker identification. IEEE Latin Am. Trans. 13(4), 1098–1111 (2015)

    Article  Google Scholar 

  36. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. Paper presented at the UAI 1995 Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345, (1995)

    Google Scholar 

  37. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1–2), 161–205 (2005)

    Article  MATH  Google Scholar 

  38. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  39. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  40. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  41. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteen International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

Download references

Acknowledgments

This research work has been partially funded by European Commission and CONACYT, through the SmartSDK project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sanchez, W., Martinez, A., Gonzalez, M. (2017). Towards Job Stress Recognition Based on Behavior and Physiological Features. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67585-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67584-8

  • Online ISBN: 978-3-319-67585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics