Abstract
Nowadays, job stress is very common and it has a high cost in terms of employees’ health, absenteeism and lower performance. It is so big the impact of this psychological disease that the WHO recognizes it as one of the great epidemics of modern life. This paper presents a job stress predictive model from monitoring employees’ behavior and physiological features. The monitoring was carried out through their job computer and a wrist-worn sensor. The proposed model obtained an accuracy of 94%, a precision of 0.943, a recall and a F-Measure of 0.914. Also, the results obtained of the evaluation of the selected model are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leka, S., Griffiths, A., Cox, T.: Work Organization and stress: systematic problem approaches for employers, managers and trade union representatives, Paris, France (2004)
Aquino Lopes, R., Cardoso, A., Afonso Lamounier, E., Jose Lopes, E., Notargiacomo Mustaro, P.: Digital games for coping with occupational stress. IEEE Latin Am. Trans. 13(12), 3907–3912 (2015)
World Health Organization: Sensibilizando sobre el EstrĂ©s Laboral en los PaĂses en Desarrollo
Blaug, R., Kenyon, A., Lekhi, R.: Stress at Work: A Report Prepared for The Work Foundation’s Principal Partners. The Work Foundation, London (2007)
Plarre, K., Raij, A., Hossain, S.M., Ali, A.A., Nakajima, M., Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A., Wittmers, L.E.: Continuous inference of psychological stress from sensory measurements collected in the natural environment. In: Information Processing in Sensor Networks (IPSN), pp. 97–108 (2011)
Bakker, J., Pechenizkiy, M., Sidorova, N.: What’s your current stress level? Detection of stress patterns from gsr sensor data. Paper presented at IEEE 11th International Conference on Data Mining Working, no. 1, pp. 573–580 (2011)
Raij, A., Blitz, P., Ali, A.A., Fisk, S., French, B., Mitra, S., Nakajima, M., Nguyen, M.H., Plarre, K., Rahman, M., Shah, S., Shi, Y., Stohs, N., Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A.: mStress: supporting continuous collection of objective and subjective measures of psychosocial stress on mobile devices. Technical report No. CS-10-004, University of Memphis (2010)
Hernandez, J., Paredes, P., Roseway, A., Czerwinski, M.: Under pressure: sensing stress of computer users. In: ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 51–60 (2014)
Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 671–676 (2013)
Hernandez, J., Morris, Rob R., Picard, Rosalind W.: Call center stress recognition with person-specific models. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 125–134. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24600-5_16
Majoe, D., Bonhof, P., Kaegi-trachsel, T., Gutknecht, J., Widmer, L.: Stress and sleep quality estimation from a smart wearable sensor. In: Pervasive Computing and Applications (ICPCA), pp. 14–19 (2010)
Hernandez, J., Benavides, X., Maes, P., McDuff, D., Amores, J., Picard, R.W.: AutoEmotive: bringing empathy to the driving experience to manage stress. In: Designing Interactive Systems, pp. 53–56 (2014)
Sharma, N., Gedeon, T.: Modeling stress recognition in typical virtual environments. In: Proceedings of the ICTs for improving Patients Rehabilitation Research Techniques, pp. 17–24 (2013)
Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., Pentland, A.S.: Pervasive stress recognition for sustainable living, pp. 345–350 (2014)
Maxhuni, A., Hernandez-Leal, P., Sucar, L.E., Osmani, V., Morales, E.F., Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016)
Ferdous, R., Osmani, V., Beltran, J., Mayora, O.: Investigating correlation between verbal interactions and perceived stress. In: Engineering in Medicine and Biology Society (EMBS) (2015)
Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Heal. Informatics 20(4), 1053–1060 (2015)
Maxhuni, A., Hernandez-leal, P., Morales, E., Enrique, L., Osmani, V., Mayora, O.: Using Intermediate Models and Knowledge Learning to Improve Stress Prediction, vol. 179. Springer, New York (2017)
Karunaratne, I., Atukorale, A.S., Perera, H.: The relationship between psychological distress and human computer interaction parameters: linear or non-linear? Lect. Notes Electr. Eng. 312, 471–478 (2015)
Pimenta, A., Carneiro, D., Neves, J., Novais, P.: A neural network to classify fatigue from human-computer interaction. Neurocomputing 172, 413–426 (2016)
Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A real-time human stress monitoring system using dynamic bayesian network. Paper presented at 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 3, p. 70 (2005)
Khan, I.A., Brinkman, W.P., Hierons, R.: Towards estimating computer users’ mood from interaction behaviour with keyboard and mouse. Front. Comput. Sci. 7(6), 943–954 (2013)
Karunaratne, I., Atukorale, A.S., Perera, H.: Surveillance of human-computer interactions: a way forward to detection of users’ psychological distress. In: Humanities, Science and Engineering (CHUSER), pp. 491–496 (2011)
Arnrich, B., Setz, C., La Marca, R., Troster, G., Ehlert, U.: What does your chair know about your stress level? IEEE Trans. Inf. Technol. Biomed. 14(2), 207–214 (2010)
Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Exp. Syst. Appl. 39(18), 13376–13389 (2012)
Han, J., Kamber, M., Pei, J.: Data Mining. Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2012)
Moore, D.S.: EstadĂstica aplicada básica. Antoni Bosch editor (2005)
Hall, M.A.: Correlation-Based Feature Selection for Machine Learning. The University of Waikato, Hamilton (1999)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Burlington, US (2011)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. Computing Research Repository (CoRR). arXiv:1608.06048 (2016)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. In: SIGKDD Explorations, vol. 11, no. 1 (2009)
Loyola, O., Medina, M.A., GarcĂa, M.: Inducing decision trees based on a cluster quality index. IEEE Latin Am. Trans. 13(4), 1141–1147 (2015)
Univaso, P., Ale, J.M., Gurlekian, J.A.: Data mining applied to forensic speaker identification. IEEE Latin Am. Trans. 13(4), 1098–1111 (2015)
John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. Paper presented at the UAI 1995 Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345, (1995)
Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1–2), 161–205 (2005)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteen International Conference on Machine Learning, pp. 148–156 (1996)
Acknowledgments
This research work has been partially funded by European Commission and CONACYT, through the SmartSDK project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sanchez, W., Martinez, A., Gonzalez, M. (2017). Towards Job Stress Recognition Based on Behavior and Physiological Features. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-67585-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67584-8
Online ISBN: 978-3-319-67585-5
eBook Packages: Computer ScienceComputer Science (R0)