[go: up one dir, main page]

Skip to main content

Real-Time Public Transport Delay Prediction for Situation-Aware Routing

  • Conference paper
  • First Online:
KI 2017: Advances in Artificial Intelligence (KI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10505))

Abstract

Situation-aware route planning gathers increasing interest. The proliferation of various sensor technologies in smart cities allows the incorporation of real-time data and its predictions in the trip planning process. We present a system for individual multi-modal trip planning that incorporates predictions of future public transport delays in routing. Future delay times are computed by a Spatio-Temporal-Random-Field based on a stream of current vehicle positions. The conditioning of spatial regression on intermediate predictions of a discrete probabilistic graphical model allows to incorporate historical data, streamed online data and a rich dependency structure at the same time. We demonstrate the system with a real-world use-case at Warsaw city, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our source code and the required virtual machine are publicly available as vagrant box at https://bitbucket.org/tliebig/developvm.

  2. 2.

    https://developers.google.com/transit/gtfs/.

  3. 3.

    Data was provided via https://api.um.warszawa.pl.

References

  1. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks (2015). arXiv:1504.05140

  2. Bast, H., Sternisko, J., Storandt, S.: Delay-robustness of transfer patterns in public transportation route planning. In: ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013, vol. 33, pp. 42–54. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2013)

    Google Scholar 

  3. Bockermann, C., Blom, H.: The streams framework. Techical report 5, TU Dortmund University, December 2012. http://jwall.org/streams/tr.pdf. Accessed 28 Nov 2013

  4. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly simple and fast transit routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_6

    Chapter  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M.: Traveling time prediction in scheduled transportation with journey segments. Inf. Syst. 64, 266–280 (2015)

    Article  Google Scholar 

  7. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68552-4_24

    Chapter  Google Scholar 

  8. Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: The price of robustness in timetable information. In: OASIcs-OpenAccess Series in Informatics, vol. 20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2011)

    Google Scholar 

  9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  10. Heinemann, U., Globerson, A.: What cannot be learned with Bethe approximations. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain (2011)

    Google Scholar 

  11. Higgins, A., Kozan, E.: Modeling train delays in urban networks. Transp. Sci. 32(4), 346–357 (1998)

    Article  MATH  Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theor. 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liebig, T., Kemloh Wagoum, A.U.: Modelling microscopic pedestrian mobility using bluetooth. In: ICAART, pp. 270–275. SciTePress (2012)

    Google Scholar 

  14. Liebig, T., Peter, S., Grzenda, M., Junosza-Szaniawski, K.: Dynamic transfer patterns for fast multi-modal route planning. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 223–236. Springer, Cham (2017). doi:10.1007/978-3-319-56759-4_13

    Chapter  Google Scholar 

  15. Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.: Dynamic route planning with real-time traffic predictions. Inf. Syst. 64, 258–265 (2017). http://www.sciencedirect.com/science/article/pii/S0306437916000181

    Article  Google Scholar 

  16. Liebig, T., Xu, Z., May, M.: Incorporating mobility patterns in pedestrian quantity estimation and sensor placement. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS, vol. 7685, pp. 67–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36074-9_7

    Chapter  Google Scholar 

  17. Mazimpaka, J.D., Timpf, S.: A visual and computational analysis approach for exploring significant locations and time periods along a bus route. In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 43–48. ACM (2016)

    Google Scholar 

  18. Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05465-5_10

    Chapter  Google Scholar 

  19. Niu, X., Zhu, Y., Cao, Q., Zhang, X., Xie, W., Zheng, K.: An online-traffic-prediction based route finding mechanism for smart city. Int. J. Distrib. Sens. Netw. 2015, 18 (2015)

    Google Scholar 

  20. Schnitzler, F., et al.: Heterogeneous stream processing and crowdsourcing for traffic monitoring: highlights. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 520–523. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8_49

    Google Scholar 

  21. Schnitzler, F., Liebig, T., Mannor, S., Souto, G., Bothe, S., Stange, H.: Heterogeneous stream processing for disaster detection and alarming. In: IEEE International Conference on Big Data, pp. 914–923. IEEE Press (2014)

    Google Scholar 

  22. Souto, G., Liebig, T.: On event detection from spatial time series for urban traffic applications. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNCS, vol. 9580, pp. 221–233. Springer, Cham (2016). doi:10.1007/978-3-319-41706-6_11

    Chapter  Google Scholar 

  23. Utsch, P., Liebig, T.: Monitoring microscopic pedestrian mobility using bluetooth. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 173–177. IEEE (2012)

    Google Scholar 

  24. Zygouras, N., Zacheilas, N., Kalogeraki, V., Kinane, D., Gunopulos, D.: Insights on a scalable and dynamic traffic management system. In: EDBT, pp. 653–664 (2015)

    Google Scholar 

Download references

Acknowledgements

This research received funding under the Horizon 2020 programme, grant number 688380 VaVeL - Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors. We gratefully thank Nico Piatkowski for supply of his STRF library, support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Liebig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Heppe, L., Liebig, T. (2017). Real-Time Public Transport Delay Prediction for Situation-Aware Routing. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67190-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics