[go: up one dir, main page]

Skip to main content

Local Sensitive Low Rank Matrix Approximation via Nonconvex Optimization

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

  • 2482 Accesses

Abstract

The problem of matrix approximation appears ubiquitously in recommendation systems, computer vision and text mining. The prevailing assumption is that the partially observed matrix has a low-rank or can be well approximated by a low-rank matrix. However, this assumption is strictly that the partially observed matrix is globally low rank. In this paper, we propose a local sensitive formulation of matrix approximation which relaxes the global low-rank assumption, leading to a representation of the observed matrix as a weighted sum of low-rank matrices. We solve the problem by nonconvex optimization which exhibits superior performance of low rank matrix estimation when compared with convex relaxation. Our experiments show improvements in prediction accuracy over classical approaches for recommendation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abernethy, J., Bach, F., Evgeniou, T., et al.: Low-rank matrix factorization with attributes. arXiv preprint cs/0611124 (2006)

    Google Scholar 

  2. ACM SIGKDD, Netflix, Proceedings of KDD Cup and Workshop (2007). http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings.html

  3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  5. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. Adv. Neural. Inf. Process. Syst. 19, 41 (2007)

    Google Scholar 

  6. Lee, J., Kim, S., Lebanon, G., et al.: Local low-rank matrix approximation. ICML 28(2), 82–90 (2013)

    Google Scholar 

  7. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ji, H., Liu, C., Shen, Z., et al.: Robust video denoising using low rank matrix completion. In: CVPR, pp. 1791–1798 (2010)

    Google Scholar 

  10. Candes, E.J., Eldar, Y.C., Strohmer, T., et al.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  12. Deerwester, S., Dumais, S.T., Furnas, G.W., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391 (1990)

    Article  Google Scholar 

  13. Buckland, M.: Annual review of information science and technology. J. Documentation (2013)

    Google Scholar 

  14. Sarwar, B., Karypis, G., Konstan, J., et al.: Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science (2000)

    Google Scholar 

  15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  16. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)

    Article  Google Scholar 

  17. Wang, X.-F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  18. Li, B., Huang, D.S.: Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recogn. 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  19. Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008)

    Article  Google Scholar 

  20. Singer, A., Cucuringu, M.: Uniqueness of low-rank matrix completion by rigidity theory. SIAM J. Matrix Anal. Appl. 31(4), 1621–1641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(615–640), 15 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, D.S.: Systematic theory of neural networks for pattern recognition. Publishing House of Electronic Industry of China, May 1996. (in Chinese)

    Google Scholar 

  27. Huang, D.S., Jiang, W.: A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Trans. Syst. Man Cybern. - Part 42(5), 1489–1500 (2012)

    Article  Google Scholar 

  28. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

  29. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13(7), 1083–1101 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the National Science Foundation of China, Nos. 61472280, 61472173, 61572447, 61373098, 61672382, 61672203, 61402334, 61520106006, 31571364, U1611265, and 61532008, China Postdoctoral Science Foundation Grant, No. 2016M601646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Ya Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, CY., Bao, W., Li, Z., Zhang, Y., Jiang, YL., Yuan, CA. (2017). Local Sensitive Low Rank Matrix Approximation via Nonconvex Optimization. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics